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MAGNETIC BREAKDOWN I N  A FINITE ONE-DIMENSIONAL MODEL 

by Gabriel  Allen 

Lewis Research Center 

SUMMARY 

Exact solut ions have been obtained of t he  Schroedinger equation f o r  a 
model approximating an e lec t ron  i n  a one-dimensional periodic po ten t i a l  acted 
on by a transverse uniform magnetic f i e l d .  I n  t h i s  model the periodic poten
t i a l  i s  approximated by a f i n i t e  chain (20 atoms long) of "periodic" square 
wells,  and the  parabolic po ten t i a l  due t o  the  magnetic f i e l d  is  approximated 
by a parabolic square-well po ten t i a l .  Procedures a r e  presented f o r  obtaining 
solut ions f o r  a r b i t r a r y  combinations of the wel l  depth of  t he  periodic poten
t i a l  Vo, the  magnetic f i e l d  s t rength  H, and the  r a t i o  of wel l  dimension ( Z w )  
t o  the  atomic dimension ( a ) ,  2 w / a .  Eigenvalues and wave functions have been 
computed f o r  the  case 2w = a / 2  f o r  severa l  values of Vo and H. The solu
t ions  obtained a re  v a l i d  f o r  a r b i t r a r y  f i e l d  s t rengths ,  but  i n  order t o  de tec t  
magnetic breakdown e f f e c t s  i n  such a shor t  chain, very la rge  values had t o  be 
used. Although the values of H i n  the  computations were of the order of 
k i l o t e s l a  ( t ens  of megagauss), it has proved possible  t o  assoc ia te  these s t a t e s  
with t h e i r  zero-f ie ld  counterparts.  The subroutines used i n  the computations 
a r e  a l s o  included. 

INTRODUCTION 


The study of the  Fermi surface of metals became g rea t ly  accelerated 
following the  publication of the  of ten quoted papers i n  references 1and 2 .  
The prof'usion of t h e o r e t i c a l  and experimental papers on Fermi surfaces,  which 
began soon afterwards, continues t o  the  present day. Consequently, there  i s  
now avai lable  a ve r i t ab le  catalogue of qu i te  de t a i l ed  Fermi surfaces f o r  a 
number of metals ( r e f .  3).  

The r e s u l t s  of p a r a l l e l  t heo re t i ca l  ca lcu la t ions  were, f o r  the most part, 
i n  such good agreement with the  experimental r e s u l t s  that various second-order 
fea tures  of the  s t ruc tu re  (e .g . ,  spin-orbi t  s p l i t t i n g )  could be examined i n  a 
meaningful way (refs.  4 t o  6 ) .  One concept i n  which i n t e r e s t  w a s  revived i s  
magnetic breakdown (refs. 6 t o  lo), a phenomenon i n  which t h e  connectivity of 
a Fermi surface i n  a given d i rec t ion  may be changed i n  the  presence of magnetic 
f i e l d s  . 

In a l l  of the  treatments of the  e f f e c t s  of magnetic f i e l d s  on the  e l e c t r i 
c a l  propert ies  of so l ids ,  computations can normally be ca r r i ed  out only f o r  the 



extreme cases of very small or very la rge  magnetic f i e l d s .  It w a s  f e l t  t h a t  it 
might prove enlightening t o  examine an exact so lu t ion  of even a s impl i f ied  
model t h a t  embodied some of t he  important features of t he  in te rac t ion  i n  so l id s  
of e lectrons with ex te rna l  magnetic f i e l d s .  

In t h i s  connection, i n  work done a t  the L e w i s  Research Center, exact solu
t ions  have been obtained f o r  the  case of an e lec t ron  i n  a f i n i t e  one-
dimensional chain of "periodic" rectangular we l l  po ten t i a l s  acted on by a 
uniform magnetic f i e l d  i n  a d i rec t ion  perpendicular t o  t h a t  of the periodic po
t e n t i a l .  The per iodic  po ten t i a l  consis ted of w e l l s  of width 2w separated by 
h i l l s  of width 2h = a - 2w, where a,  the  d is tance  between atomic centers ,  i s  
the  period. The solut ions are v a l i d  f o r  a r b i t r a r y  values of a, w, and h.  

Numerical values have been obtained f o r  a l l  of the  bound-state eigenvalues 
and some of t he  eigenfunctions f o r  a = 3 angstroms. Since the  number of in 
dividual  computations was a monotonic increasing funct ion of the  length of t he  
chain, it w a s  necessary t o  keep t h i s  length down t o  20 atoms. The magnetic 
f i e l d s  were then chosen t o  be l a rge  enough s o  a s  t o  make the  e f f ec t ive  magnetic 
po ten t i a l  comparable t o  the,depth of t he  wells i n  the  periodic po ten t i a l .  For 
a chain of t h i s  length (60 A ) ,  t he  magnetic f i e l d s  were, therefore,  of t he  
order of k i l o t e s l a  ( tens  of megagauss). 

It may be noted t h a t  t he  behavior of an e lec t ron  subjected t o  such high 
f i e l d s  i n  t h i s  model a c t u a l l y  approximates t h a t  of e lectrons i n  r e a l  so l id s  
subjected t o  reasonable f i e l d s  of the  order of  a few t e s l a .  From a dynamical 
point of view, the  f i e l d  should be of such a s i z e  t h a t  the magnetic p a r t  of  
the po ten t i a l  becomes an appreciable f r ac t ion  of t he  t o t a l  po ten t i a l  over some 
p a r t  of t he  e l ec t ron ' s  path.  I n  t h i s  model, the  e lec t ron  can t r a v e l  a maximum 
dis tance of 60 angstroms before being sca t te red ;  therefore ,  f i e l d s  of t h e  order 
of k i l o t e s l a  are required t o  bui ld  up the  magnetic p a r t  of the  po ten t i a l  i n  
such a small dis tance.  I n  real  so l ids ,  on the  other hand, the  mean f r e e  path 
may be orders of  magnitude grea te r  than t h i s ,  and much smaller magnetic f i e l d s  
could then accomplish the  same object ive.  

It has been proved possible,  however, t o  assoc ia te  each of these s t a t e s  
with i t s  zero- f ie ld  s t a t e .  Thus, by following the wave function for t he  zero-
f i e l d  s t a t e  t o  i t s  high-f ie ld  s t a t e ,  something may be learned about the be
havior of the  system f o r  moderate or intermediate f i e l d s .  

The computations were performed on the  IBM 7094 a t  the Lewis Research 
Center, and the  Fortran IV subroutines used a r e  described and l i s t e d  i n  the  
appendixes. 

SYMBOLS 

zi vector po ten t i a l  

a dis tance between atomic centers ,  period 

CH constant defined by eq. (49)  
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veloc i ty  of l i g h t  

parametrized quant i ty  used l ike energy, see eq. ( 2 1 )  

Fermi energy 

zero- f ie ld  energy gap i n  band s t ruc ture  

charge of  e lec t ron  

PI 

Y2 

magnetic f i e l d  s t rength  


magnetic f i e l d  


nth degree Hermite polynomial of argument 5 


magnitude of z component of magnetic f i e l d  


hal f  width of h i l l  

Dirac h, Planck's 

index specifying 

components of wave 

mass of  e lec t ron  

integer  defined by 

constant/Zfl 

jth atom from center  

vector 

eq. ( 1 9 )  

number of atoms i n  pos i t ive  ha l f  of chain 

integer  defining the  number of  energy l eve l ,  

momentum 

cyclotron radius  

determinants, see p.  38 

one-dimensional po ten t i a l  

approximation t o  V,,(x'), see eq. ( 1 7 )  

v,g ( X I )  po ten t i a l  due t o  magnetic f i e l d ,  1/2 w ~ x ' ~  
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Vp( x),Vp( x’  ) 

VO 

W 


X,Y, = 

X ’  


XO 

r 

E 

En 

463 

WC 

Subscripts:  


e 


j 


M 


mag 

N 

P 

SB 

WB 

X,Y,Z 

a,P 

defined by eqs . (13) and (14), respec t ive ly  


w e l l  depth of per iodic  p o t e n t i a l  


energy due t o  magnetic f i e l d  defined by eq. (18) 


hal f  width of w e l l  


coordinates 


x - xo 


defined by eq. ( 6  ) 


defined by eqs. (30) and (31) 


energy 


energy l eve l s  defined by eq. ( 9 )  


integer  defined by eq. (19b) 


wave funct ion 


cyclotron frequency 


even so lu t ion  


index s p e c i e i n g  jth atom from center  


approximate magnetic 


magnetic 


number of atomic dis tances  from center  of one end of chain 
counting c e n t r a l  we l l  as 0 

per iodic  

s t rong breakdown 

weak breakdown 

coordinates 

defined by eqs . (Cl5) t o  ((218) 
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Superscripts:  

h h i l l  

w w e l l  
-
0 sign of appropriate g+ 

DERIVATION OF WAVE EQUATION 

Free Electrons i n  Magnetic F ie ld  

The wave equation describing a f r e e  electron i n  a constant magnetic f i e l d  
may be wr i t ten  as 

3 -3 

where A i s  the  vector po ten t ia l ,  p i s  the momentum, and E is  t h e  energy. 
The sp in  of t he  e lec t ron  i s  neglected. 

3 + 3 

If the  magnetic f i e l d  H i s  given by Hzk, where Hz i s  constant and A 
i s  chosen i n  the  Landau gauge ( r e f .  111, 

3 

A = H,(O,x,O) 

Then equation (1)may be wr i t t en  as 

(3) 


The subs t i tu t ion  

( 4 )  

w i l l  r e s u l t  i n  t he  following s impl i f ica t ion  of equation (3 ) :  

%-2 2  ,,]Adh + [& (% + HZx>Z + 1 352 2  = �1 
2m &2 ( 5 )  

Equation (5) is the  equation of a harmonic o s c i l l a t o r  centered about 

xo = -5 
eH2 

with frequency 

uc = -e H,m c  



-- 

Z?f 

Thus, i f  x '  = x - xo, equation (5)  may be wr i t t en  i n  t h e  more fami l ia r  form 

From t h i s  form, it i s  known that 

K Z k $  
En - 2m - coc~(n+ +) 

or (using eq. ( 7 ) )  

K2kE eH, 
En = 2m + -mc K(n + +) ( 9 )  

Thus, the allowed energy l eve l s  of a free e lec t ron  i n  a constant magnetic 
f i e l d  a r e  given by equation ( 9 ) .  

The term An(x) w i l l  be a harmonic o s c i l l a t o r  funct ion i n  (eH,/cK)(x- xo) .  
Thus, 


where Hn( E ; )  s i g n i f i e s  the  nth degree Hermite polynomial of t he  argument 5 .  
A fu r the r  discussion may be found i n  reference 1 2 .  

Electron i n  One-Dimensional Periodic Po ten t i a l  

and Constant Magnetic Field 

--+ I$ an e lec t ron  i s  acted on simultaneously by a constant magnetic f i e l d  
H = H,k and a one-dimensional po ten t i a l  i n  the  x-direction, then equation (1) 
must be replaced by 

When the  previous subs t i tu t ions  a r e  used i n  equation (ll), it may be reduced t o  

2 
1 2 2  

2m &2 + [& (my + x) + -K k, + V(x)1A = EA2 m  

The following assumptions should now be made: 

(1)The term V(x) is  a periodic po ten t i a l  Vp(x) of period a such that 

6 



and 

Vp(x + na)  = v ~ ( x )  ( 13b1 
where n i s  any in teger .  Here w w i l l  be re fer red  t o  as the w e l l  region. 

( 2 )  The t e r m  xo is  a whole number of atomic dis tances .  Assumption ( 2 )  
w i l l  have the  e f f e c t  of making Vp(x') periodic with the same period a as 
Vp(x) s ince the  center  of a wel l  region i n  x w i l l  coincide with the  center  of 
a we l l  region i n  x '  (equal  t o  x - xo) SO t h a t  

Vp(x')  = 0 -w 2 x '  2 w 

= vo w < x '  5 a - w 

and 

vp (x t  + na)  = vp(x '  ) 

Then, the equivalent of equation ( 8 )  can be wr i t ten  a s  

A + Vp(x')A = 0 

The quant i ty  1 / 2  q 2 x t 2 ,  which w i l l  be ca l l ed  Vmg(x'), may be considered t o  
be a po ten t i a l  due t o  t he  magnetic f i e l d .  Then equation (15) can be wr i t ten  a s  

t 

I I3 3 1 - 13 I J - 7 0 3  3 3 3 3 
' + I + 

I + ' 
m * m E s 

F T T -
Figure 1. -Form of potential due to constant magnetic field and 

periodic square well. w = a14. 

The form of the po ten t i a l  Vmg(x')  
+ Vp(x')  i s  shown i n  f igure  1. 

I n  each in t e rva l ,  the  po ten t i a l  i s  
l i k e  a harmonic o s c i l l a t o r  i n  t h a t  it is 
parabolic i n  x ' .  The general  solut ion 
t o  such a po ten t i a l  problem i s  a sum of 
two Weber functions (ref.  13), each of 
which has spec ia l  behavior a t  the  or ig in  
and a t  i n f i n i t y .  I n  an a c t u a l  harmonic 
o s c i l l a t o r ,  only one of these functions 
serves as a wave funct ion because of the  
requirement t h a t  wave functions be w e l l  
behaved at inf initye Since each 
i n  t h e  present problem i s  f i n i t e ,  
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however, ne i ther  of t h e  Weber functions can be eliminated as an allowable solu
t ion ,  and the  usua l  l i n e a r  combination of two independent solut ions of the 
second-order d i f f e r e n t i a l  equation must be used f o r  t h e  wave function. 

The form of the  wave function i s  invar ian t  throughout the e n t i r e  range of 
X I ,  the wave funct ion f o r  a given in te rva1 ,be ing  dis t inguished e n t i r e l y  by the  
coe f f i c i en t s  appropriate  t o  t h a t  i n t e rva l .  

It may be noted t h a t  t he  symmetry which seems t o  be physical ly  apparent 
i n  t h i s  problem i n  t h e  form of t h e  p o t e n t i a l  is  somewhat obscured by the  mathe
matical  form of the wave f'unction. The Weber functions f o r  -x are d i f f e ren t  
from those f o r  +x, and t h i s  f a c t  must be taken i n t o  account when matching a t  
x '  = 0. 

There i s ,  i n  general, no a c t u a l  physical  symmetry here .  The t e r m  Vp(xl) 
is  symmetric about x = 0, whereas Vmg(xl ) i s  symmetric about x = xo = 
-ciiky/eH,. The spec ia l  assumption has been made t h a t  xo is  an i n t e g r a l  
number of atomic dis tances .  As  w a s  a l ready said, i n  such a case the  e n t i r e  
po ten t i a l  Vma8(x') + Vp(xl) is symmetric i n  X I .  Clear ly  t h i s  assumption w i l l  
only be satisfled f o r  spec ia l  combinations of ky and H,. 

However, t h e  noncoincidence of the ver tex  of t he  parabola Vmag(xl) from 
the  center  of t he  w e l l  i n  Vp(x') (see f i g .  1)should not  se r ious ly  a f f e c t  the 
physical  r e s u l t s  as long as the  r e su l t i ng  t o t a l  p o t e n t i a l  does not d i f f e r  
g rea t ly  *om the  Vmg(x' ) + Vp( x '  ), which i s  the  ordinate  of f igu re  1. The 
depth of a we l l  i n  t he  per iodic  p a r t  of t he  p o t e n t i a l  should be of t he  order of 
a f e w  e lectron v o l t s .  The p a r t  of  the p o t e n t i a l  due t o  the  magnetic f i e l d  
turns  out t o  be expressible  as 

where H, is i n  tesla, and x - xo i s  i n  angstroms. 

The one-dimensional chain i n  the  model i s  about 20  atoms long; therefore ,  
magnetic f i e l d s  l a rge  enough so  t h a t  Vmg(xl) contr ibutes  a few e lec t ron  v o l t s  
before the  chain ends should be used. Since there  are 10 atoms on each side of 
t he  center ,  t h i s  means Vmag(X'). x 8X10'9 H$ e lec t ron  v o l t  a t  the  ends of the  
chain s o  t h a t  HZ x 1k i l o t e s l a  or 10 megagauss i n  order t h a t  Vmag(x') con
t r i b u t e  1elec t ron  v o l t  t o  t h e . t o t a 1  po ten t i a l .  Because the  po ten t i a l  var ies  
as (x')~, Vmg(x') w i l l  be much smaller than 1elec t ron  v o l t  over most of t he  
chain so  t h a t  a deviation from symmetry should have a r e l a t i v e l y  saall e f f e c t  
on the  r e s u l t s .  

Approximation of Magnetic Po ten t i a l  by 

Parabolic Square-Well Po ten t i a l  

Furthermore, a p o t e n t i a l  approximating Vmag(x') should a l s o  not a f f e c t  
t he  r e s u l t s  too d r a s t i c a l l y  i f  it has t he  form 
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where 

H i s  i n  tesla, n is  any integer ,  and mXl is an integer  depending on x' so 
t h a t  

mx1 = v v a  - w I x' I ( v  + l ) a  - w v any integer  (19b1 
The po ten t i a l  defined by equations (19) w i l l  be ca l l ed  a parabolic square-

wel l  po ten t i a l .  

Define 

where VM(X') i s  given by equations (17a)  and (17b) and Vp(x') is s t i l l  given 
by equations (14 ) .  

The f a c t  t h a t  the t o t a l  po ten t i a l  i s  not periodic means that the wave 
function and i t s  der iva t ive  must be matched a t  each boundary between regions of 
constant po ten t i a l .  This means that the  rank of the  determinant used f o r  t he  

L I

,rvo , r V b  f V 0  

-z 5 

Y 
I Figure 2. - Form of potential given by equations (20) and (22). 

determinantal compat ibi l i ty  
condition i s  a t  least twice 
as l a rge  as the  number of 
regions of constant poten
t i a l  i n  the  pos i t ive  ha l f  of 
t he  system ( tak ing  advan
tage of symmetry). n u s ,  i n  
order t o  keep the  determi
nant down t o  a manageable 
s ize ,  t he  system must be 
kept f i n i t e .  This is 
r ead i ly  accomplished by add
ing t h e  cutoff  condition 

V[(N + 1)a - w] = DO ( 2 2 )  
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where N i s  t h e  number of atoms i n  t h e  pos i t i ve  ha l f  of t he  chain. 

The form of V ( x '  ) can be seen by examining V M ( X ~) + Vp( x') which is  
shown i n  f igu re  2 (compare with f i g .  1). The subs t i t u t ion  of VM(X')  f o r  
Vmag(x ' )  has t h e  advantage t h a t  t he  so lu t ions  i n  each h i l l  or wel l  region are 
now combinations of trigonometric or hyperbolic functions r a the r  than Weber 
functions.  The e f f e c t  of V M ( X ' >  is  a kind of averaging of Vmg(x ' )  i n  any 
region considered. The averaging could be improved by using ( m z ,  + mxr + 1 / 3 ) V J  
ins tead  of m$tVb. When considering the  nature  of t he  approximations already 
inherent i n  t h e  model, however, t he  indicated improvement would be second order 
a t  bes t .  

Another f ac to r  t h a t  must be considered is  t h e  e f f e c t  of t h e  cutoff  as 
given by t h e  boundary condition i n  equation ( 2 2 ) .  It is c l e a r  from f igures  1 
and 2 th? t  the  e f f e c t  of t he  cutoff  w i l l  be small f o r  s t a t e s  ly ing  w e l l  below 
V o  + N2V0, s ince  t h e  wave functions would have small amplitudes when 
x r  < ( N  + 1)2a - w even i f  the re  were no cu to f f .  The energies f o r  a few of 
t he  s t a t e s  invest igated were not r e a l l y  l o w  enough t o  avoid a forcing of t he  
wave function t o  zero i n  the  v i c i n i t y  of x t  = ( N  + 1)2a - w. Most of t he  
s t a t e s  examined a r e  not g r e a t l y  a f f ec t ed  by the  condition i n  equation ( 2 2 ) ,  
however. 

SOLUTION OF WAVE EQUATION 

Derivation of Wave Function 

When the  quan t i t i e s  defined by equations ( 2 0 )  and ( 2 1 )  are used, t he  wave 
equation f o r  A(x') becomes 

-+d2A [E - V(x')]A = 0 
d X l 2  

The so lu t ion  of equation ( 2 3 )  i s  r ead i ly  obtained. Denote the  region from 
-a t o  a a s  the  Oth region. This i s  the  region f o r  which V M ( X ' )  = 0. 
Furthermore, denote the  i n t e r v a l  by a subscr ip t  ( s t a r t i n g  with 0) and ind ica te  
by an h or w superscr ip t  whether the  periodic p a r t  of the  po ten t i a l  i s  
"on'' ( h i l l )  or "o f f "  ( w e l l ) .  Then i n  the  0th well ,  

and i n  the  Oth h i l l ,  

A$(x') = C$ s i n  ~ 5 x 1+ % cos ~ 8 x 1  w I x '  I a - w 

where the  C ' s  and D ' s  a r e  constants and 
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An analogous expression e x i s t s  fo r  the  wave function i n  the  Oth h i l l  for 
negative x ' ;  t h a t  is ,  -(a - w )  I x '  I - w. 

In the  nth in t e rva l ,  

% ( X I )  = CE s i n  r k x f  + % cos ykxt na + w < x '  < ( n  + 1 ) a  - w (29 )  

where 

and 

Equations ( 2 8 )  and ( 2 9 )  a r e  of  the  proper form only for r e a l  pos i t ive  
rnrs. The other p o s s i b i l i t i e s  w i l l  be shown subsequently. 

Both even and odd so lu t ions  e x i s t ,  i n  general .  The even solut ions w i l l  be 
discussed i n  d e t a i l  and necessary modifications i n  procedure f o r  odd solut ions 
w i l l  be indicated where r e l evan t .  

The form of the  so lu t ion  i n  the  Oth wel l  becomes ( subscr ip t  e denotes an 
even so lu t ion )  

The solut ions i n  the  other  i n t e rva l s  maintain the  same forms as given by 
equations (30) and (31), but  pains must be taken t o  use the  even coe f f i c i en t s  
and eigenvalues. Thus, 



and 

e , e ( x ' )  = c;,, s i n  rh x' + e,ecos rn,ex 'h 
n, e 

na + w < x' 2 ( n  + 1)a - w 

where 

rE,e = @= 

and 

The t e r m  E, i s  an eigenvalue of equation ( 2 3 )  belonging t o  an  even eigen
funct ion.  

It w i l l  be convenient t o  write the  wave funct ion i n  each i n t e r v a l  i n  such 
a form t h a t  it i s  centered about one of t h e  boundaries of  the  given in t e rva l .  
Dropping the  e subscr ip t  f o r  s impl ic i ty  r e s u l t s  i n  

0AW(xf)= BE COS y 3 '  -w Ix '  2 w (37) 

na + w 5 x '  5 ( n  + 1). - w I 3 9  1 
and 

where the coe f f i c i en t s  a r e  a l l  l i n e a r  combinations of the  C ' s  and D's i n  w - wequations (33) and (34) ,  Bo 7 Do,e, the  y ' s  a r e  given by equations (35),  and 
N i s  the  number of atomic dis tances  from the  center  t o  one end of t he  chain 
counting t h e  c e n t r a l  w e l l  as 0. It should be noted t h a t  A 8  i s  centered about 
x '  = 0; the  arguments of and 7$ are zero a t  the  l e f t  boundary of the 
appropriate  in te rva l ,  and the  argument of AN is  zero a t  the  boundary a t  which 
the  p o t e n t i a l  becomes i n f i n i t e  and t h e  wave funct ion vanishes (which i s  the  
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r i g h t  boundary of t he  l a s t  i n t e r v a l ) .  

A s  has been s t a t e d  previously, solut ions of t h e  form shown are f o r  r e a l  
nonzero r*s. If, f o r  some eigenvalue E, r i n  some i n t e r v a l  ( say  the  jth) 
i s  zero, then i n  that i n t e r v a l  

where the  + o r  - occurs according t o  whether the  i n t e r v a l  i n  question i s  a 
h i l l  o r  wel l  region, respect ively.  

Finally,  i f  r is  imaginary i n  some in te rva l ,  the  trigonometric functions 
become the corresponding hyperbolic ones and t c e  general  form remains un
changed. Quantit ies g and G a r e  defined as follows: 

The form of  the solut ion i n  a given i n t e r v a l  w i l l  then be determined by the  
s ign of g i n  the  i n t e r v a l .  (Note t h a t  g8 is  always grea te r  than 0 . )  Use 
w i l l  be made of the  well-known propert ies  s i n  ia. = i s inh  a. and s inh ia = 
i s i n  a i n  the  expressions t h a t  a r e  used f o r  A(x'). A l s o ,  a t  t h i s  point  the  
coef f ic ien ts  A w i l l  be redefined i n  such a way t h a t  the  t r a n s i t i o n  between 
pos i t ive  and negative g values w i l l  be smooth. A summary of the  d i f f e ren t  
forms of ~ ( x ' )i n  various regions i s  

A ~ ( x ' )  = BB COS G ~ X '  (44) 

where -w < x' F w, 
r' 

x '  - (na - w)] + BE cosh GE - (na - w)] < 0 

where na - w 2 x' L n a  + w, 
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s inh  GE[xl - (na + w )1 + BE cosh e 
Gn 

.1. 

where na + w 5 x '  5 ( n  + 1). - w, and 

g; = 0 

g+j > 0 (47)  

where N a  + w I x '  5 ( N  + 1). - w. 

Eigenvalues. - The determinantal compat ibi l i ty  condition from which the  
eigenvalues may be determined can be obtained by matching the  wave function and 
i t s  f i r s t  der iva t ive  a t  each of the  boundaries. The d e t a i l s  a r e  given i n  
appendix A.  The determinant i s  la rge  and unwieldy, but  for tuna te ly  a system

a t i c  procedure f o r  evaluating it i n  general  
Breakdown could be formulated. A subroutine w a s  devised 
boundary from which the  r e s u l t s  could be obtained on the 

Blount 
Strong IBM 7094. Figures 3(a) t o  ( e )  show the  eigen

values f o r  a chain of 10 atoms on each s ide  of
.06 

t he  O t h  we l l  p lo t t ed  as a flunction of magnetic 
f i e l d  s t rength  (by using Vo). Each f igu re  rep

t 
-6.04 

resents  a f ixed  per iodic  w e l l  depth (Vo). Note 
> t h a t  t he  eigenvalues a r e  ac tua l ly  E - ?i2k2/2m 

ra the r  than E (see eqs. (30) and (31) ) .  

.02 Wave funct ions.  - The matching conditions 
t h a t  are  used co l l ec t ive ly  t o  obtain the  eigen
values can now be used individual ly  i n  succes

0 sion t o  f i n d  the  r a t i o s  of the  coef f ic ien ts  i n
E, ev each i n t e r v a l  t o  some given coe f f i c i en t  t h a t  

(a) Even eigenvalues; Vo, 1electron volt. w i l l  remain a r b i t r a r y  except f o r  normalization. 
Figure 3. - Eigenvalues as function of "6. The coef f ic ien t  of the  Oth w e l l  BE has been 
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(b)  Even eigenvalues; Vg, 3 electron volts. 

Figure 3. -Continued. Eigenvalues as function of Vd. 

chosen as the  a r b i t r a r y  coef f ic ien t ,  and a l l  of t he  other coef f ic ien ts  have 
been obtained i n  terms of it. The d e t a i l s  a r e  shown i n  appendix B. 

In order t o  compare the  behavior of d i f f e ren t  s t a t e s ,  it i s  convenient t o  
use noimalized wave funct ions.  The normalization is  shown i n  appendix C .  

MAGNETIC BFUMKDOWN I N  MODEL 

In  order t o  see what magnetic breakdown means a s  appl ied t o  t h i s  model, 
the behavior of the system may be examined as the magnetic f i e l d  increases,  and 
an attempt t o  account f o r  the  changes i n  a reasonable way may be made. There 
a r e  a few guidelines t h a t  may be l a i d  out i n  advance without (it  i s  hoped) 
prejudicing the  in t e rp re t a t ion .  

When there  i s  no magnetic f i e l d ,  the system may be described a s  an e lec
t ron  in te rac t ing  with a per iodic  square-well po ten t i a l  i n  a box. There i s  a 
basic  objection t o  the  use of ordinary per turbat ion theory i n  estimating the 
e f f e c t  of magnetic f i e l d s  on the propert ies  of laboratory s ized  samples 
( r e f .  1 4 ) .  In f a c t ,  it is  the  periodic p a r t  of t he  po ten t i a l  that is  commonly 
t r ea t ed  as a per turbat ion t o  describe the  behavior of systems under the  inf lu
ence of both a periodic p o t e n t i a l  and magnetic f i e l d s  ( r e f s .  7 to 10).  Never
the less ,  the  behavior of t h e  system w i l l  change i n  a continuous manner as the  
magnetic f i e l d  en ters  the  p ic ture .  Speaking qua l i ta t ive ly ,  very small f i e l d s  
should have a r e l a t i v e l y  in s ign i f i can t  e f f ec t ,  and, as the  f i e l d s  increase,  
t h e i r  e f f e c t  should become more e a s i l y  percept ible .  Therefore, some measure 
may be sought that  might be expected t o  ind ica te  when the  s i z e  of t he  f i e l d  is  
such as t o  have r ead i ly  d iscern ib le  e f f ec t s  on the  behavior of the  system. 
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(c) Even eigenvalues; Vo, 5 electron volts. 

Figure 3. - Continued. Eigenvalues as function of Vi,. 

Perhaps t h e  simplest  and most naive measure t h a t  comes t o  mind i s  a com
parison of t he  magnitude of the  magnetic p o t e n t i a l  with Vo, t he  depth of t he  
wel l  i n  the per iodic  po ten t i a l .  When equations ( 1 7 )  a r e  used, t h i s  condition 
may be wr i t t en  as 

v M ( X * )  = VO (48)  

The conditions described by equation (a),i n  which somewhere i n  the  chain 
VM(X' ) becomes as l a rge  as Vo, w i l l  be r e fe r r ed  to as weak breakdown (WB) . 
More exp l i c i t l y ,  define 

2 ev
CH = L(E) = 8 . 7 9 3 9 8 4 ~ 1 0 ' 1 ~  (49)2m c ( i ) 2 (  tesla12 

and deffne wB t o  be the  value of Y i n  equation ( 1 9 )  a t  weak breakdown. 
Then Vo  is expressible  as 
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(e) Blowup of lower energy portion; VO, 10 electron volts. 


Figure 3. - Concluded. Eigenvalues as function of Vd. 


and VM a t  weak breakdown i s  

@MIm = CHH2&a2 = Vo 
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Furthermore, 

I vn 
(53) 

There is  a second type of breakdown t h a t  may be ca l l ed  s t rong breakdown. 
In t h i s  s i t ua t ion ,  t h e  change i n  VM over a dis tance a equals Vo, s o  t h a t  
the  magnetic p o t e n t i a l  "washes out" t he  per iodic  po ten t i a l .  Thus, 

s o  t h a t  l e t t i n g  the subscr ipt  SB denote s t rong breakdown enables VM t o  be 
expressed as 

(vMlSB = c H H ~ ( ~ S B ~ ) ~  (55) 

VO 
nSB = 

2 c ~ H ~ a ~  

and 

Recently, a qu i te  d i f f e ren t  c r i t e r i o n  for breakdown has proved use fu l  i n  
explaining c e r t a i n  experimental r e s u l t s  ( r e f s .  7 t o  10). This condition i s  
sometimes ca l l ed  Blount breakdown and f o r  an i n f i n i t e  c r y s t a l  i s  commonly ex
pressed i n  the  form 

E2L= (58  11 

'licDcEF 

where Eg i s  the  zero- f ie ld  energy gap i n  t h e  band s t ruc tu re  and EF is  the  
Fermi energy. 

I n  t h i s  model, if it i s  assumed t h a t  an eigenvalue E plays the  r o l e  of 
EF, Blount's c r i t e r i o n  becomes 

E2 
H = 8x10~-ftesla (59) 
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or i n  terms of v:, 
I 0.5 X Eg"vo = ev 

E2 

It may be seen from f igure  3 that a c t u a l  gaps a t  zero f i e l d  can be found, 
and these gaps may be used d i r e c t l y  f o r  Eg ins tead  of resor t ing  t o  f irst-
order per turbat ion theory as i s  more commonly done ( r e f .  10). 

RESULTS AND DISCUSSION 

Description of Specif ic  Model 

F i r s t ,  numerical values f o r  the  spec i f i c  model used i n  the computations 
w i l l  be given. A value of 3 angstroms f o r  a has been chosen as representa
t i v e  of a la rge  number of a c t u a l  so l id s .  It should be emphasized t h a t  the  r e 
s u l t s  i n  the  preceding sec t ion  a re  va l id  f o r  a l l  values of a ,  w, h, and H,. 
I n  t h i s  report ,  the  computations have, nevertheless,  been l i m i t e d  t o  the  case 

2w = 2h = a/2 = 1.50 1 
With t h i s  value of a ,  equation (18) i s  expressible 

Next the  length of the chain w a s  f ixed  by the  time required f o r  the  sub
rout ines  t o  go through a s e t  of eigenvalues f o r  f ixed  Vo and Vb. It turned 
out that a chain 10 atoms on each s ide  of the  Oth wel l  had a determinant of 
such a s i z e  t h a t  a s e t  (with f ixed VO and Vb) could run i n  the  maximum 
allowed time of 5 minutes. Thus, N was s e t  equal t o  1 0  i n  the  computations. 

Eigenvalues 

The ac tua l  Fortran IV subroutines used i n  the  computations a r e  described 
i n  appendix D. The eigenvalues f o r  various w e l l  depths a r e  shown a s  a funct ion 
of magnetic f i e l d  s t rength  (or Vb) i n  f igu re  3. For each Vo, computations 
have been ca r r i ed  out f o r  a few values of VA and these points  connected by 
s t r a i g h t  l i n e s .  (This procedure accounts f o r  t he  kinks i n  the  f igu res . )  Fig
ures 3(a) t o  3(d) ,  however, show only even eigenvalues, while eigenvalues ob
ta ined  from odd and f rom even solut ions are shown i n  f igu re  3 ( e ) .  These eigen
values a re  dis t inguished on the  f igures  (where poss ib le )  by broken and s o l i d  
l i nes ,  respect ively.  It may be noted t h a t  the chain i n  the model was  long 
enough f o r  t he  system t o  show a clear-cut  band s t ruc tu re  a t  zero f i e l d .  A s  can 
be seen, the  magnetic f i e l d  s h i f t s  these zero- f ie ld  l eve l s  by unequal amounts. 
Thus, t he  energy gaps i n  the  band s t ruc tu re  Eg (which are zero-f ie ld  concepts 
i n  ordinary band-structure language) would be d i f f i c u l t  t o  discern a t  l a rge  
f i e l d s  were it not  f o r  t he  f a c t  t h a t  they w e r e  connected t o  the  zero-f ie ld  
pos i t ions .  
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Some of the even and odd l eve l s  f o r  higher f ie lds  are almost degenerate. 
These s i t ua t ions  a r e  denoted by a D a t  t h e  energy i n  question. The a c t u a l  
computations that were performed using double-precision ar i thmetic  show t h a t  i n  
every case the re  w a s  a nonzero separat ion between even aTd odd evergy l eve l s .  
The pa t t e rn  was always such that f o r  a given Vg and Vo the  lowest s t a t e  i s  
even, and then a l t e r n a t e  odd and even s t a t e s  follow as far out as the  computa
t ions  were ca r r i ed .  This i s  c e r t a i n l y  t o  be expected and w a s  only used as a 
rough check t o  see if  any states were skipped i n  the  eigenvalue search rout ine.  

Certain fea tures  t o  be expected if an a c t u a l  band s t ruc tu re  were observed 
were common t o  t he  eigenvalues of the  system independent of the  wel l  depth and 
are shown f o r  V0 = 10 i n  f igu re  3(e) .  F i r s t  of a l l ,  there  w e r e  always 2 1  
e igenstates  i n  the  first band. The lowest e igens ta te  w a s  always even, and t h e  
e igens ta te  a t  the  top  of t h e  f i rs t  band w a s  a l s o  even. The lowest state i n  the  
second band w a s  therefore  odd. 

Since it w a s  intended t o  examine the  three types of breakdown described 
i n  the  preceding sect ion,  it w a s  necessary t o  examine states i n  po ten t i a l s  f o r  
which strong breakdown had occurred. A s  a margin of s a fe ty  f o r  each value of 
Vo, computations were made up t o  eigenvalues 50-percent l a rge r  than the  value 
of the  pe r t inen t  ( V M ) ~ ~ .  

I n  t h i s  connection, it may be mentioned t h a t ,  i n  order f o r  t he  e f f ec t s  of 
strong breakdown to be manifest, t he  energy of t he  s t a t e  being examined should 
be high enough s o  t h a t  t h e  wave function has an appreciable amplitude i n  t h e  
region where t h e  s lope of VM(X' ) is changing rap id ly  enough t o  wash out the  
e f f e c t  of V,(x') (see eq. (54) ) .  Thus, s t rong breakdown w i l l  be said t o  occur 
i n  t h i s  model whenever the  system is  i n  an e igens ta te  such t h a t  E 2 (VM)SB ' 
When equations (50) and (55) a r e  used, t he  equation of t he  strong breakdown 
boundary i s  

Both s t rong and Blount breakdown l i n e s  a r e  indicated i n  the f igu res .  The 
Blount boundary w a s  p lo t t ed  by using the  a c t u a l  gaps taken from t h e  f igures  f o r  
Eg i n  equation (60 ) .  

Figure 4 shows t h e  s h i f t i n g  of the  eigenvalues by increasing the  we l l  
depth a t  a constant magnetic f i e l d .  It may be noted t h a t ,  f o r  small. w e l l  
depths, t he  separat ion between successive eigenvalues does tend, a s  VO goes 
t o  zero, t o  approach the  constant value (equal  t o  0.322 ev f o r  the  f i e l d  
chosen) as given by equations ( 7 )  and ( 9 ) .  It should be mentioned t h a t  t he  
s t a t e s  on the  E-axis which represent  zero w e l l  depth a r e  the a c t u a l  values f o r  
a f r e e  e lec t ron  i n  a magnetic f i e l d  computed from equation ( 9 ) .  If the  eigen
values f o r  VO = 0 i n  f i g u r e  2 a r e  computed, t he  lower states (E 5 7 ev) are 
r a the r  c lose t o  those on the  E-axis i n  f igu re  4, but  t he  separation f o r  the  
higher s t a t e s  becomes r a the r  la rge  (approximately 0.7 ev between the  l as t  two 
eigenvalues shown). 
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Figure 4. - Effect of well-depth at constant magnetic field of 2.8 kilotesla (28 megagauss). Values at 
Vo = 0 are eigenvalues for free electron in magnetic field obtained from equation (10). 

For the  lower eigenstates ,  there  seems t o  be a s l i g h t  decrease i n  separa
t i o n  as Vo increases.  For the  higher lying s t a t e s  i n  the f i rs t  band, how
ever, the eigenvalues seem t o  c l u s t e r  i n  degenerate odd-even pa i rs  separated 
by about 1electron v o l t .  A comparison with f igure  3 shows t h a t  the degener
acy i s  l i f t e d  a f t e r  crossing the gap between the f i r s t  and second bands. 

A s  the wel l  depth increases,  it i s  tempting t o  search f o r  any tendency f o r  
the s t a t e s  t o  spread i n t o  a band ( l i n e  broadening) as described i n  reference 
ence 10. However, t h i s  broadening arose from the degeneracy i n  the  posi t ion 
of xo of each s t a t e  a t  f ixed  Vb. By contrast ,  the  computations i n  the 
present model were made a t  a f ixed xo, so  tha t  there  i s  no reason f o r  the  
e f f e c t  t o  show up i n  the model. 

Wave Functions 

The a c t u a l  subroutines used i n  these computations a r e  described i n  appen
d ix  E.  I n  order t o  learn  more about individual  s t a t e s ,  it is he lpfu l  t o  look 
a t  the wave functions.  Wave functions have been computed and p lo t ted  f o r  a 
la rge  number of eigenvalues and some of the c h a r a c t e r i s t i c s  t h a t  were found are 
shown here. Advantage has been taken of symmetry s o  that the p l o t s  show only 
the  posi t ive half  of the chain. 
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Most of the  wave functions shown a r e  f o r  a r a the r  deep w e l l  (VO = 10 ev) . 
Some wave functions f o r  shallower wel ls  have been computed and do not  seem t o  
differ q u a l i t a t i v e l y  from these.  Therefore, t h e  discussion w i l l  be limited t o  
t h i s  we l l  depth unless t he  contrary is spec i f ied .  

The preceding discussion of t he  eigenvalues shown i n  f igu re  3 contended 
t h a t  t h e  l i n e s  connecting the  eigenstTtes could be in te rpre ted  aslshowing the  
change i n  t h e  zero- f ie ld  states as Vo increased. A t  a given VO, t he  wave 
funct ion f o r  t he  lowest eigenvalue found (which i s  always even) has no nodes 
over t he  e n t i r e  20-atom chain; t h e  wave function f o r  the next one (which i s  
odd) has one node a t  X I  = 0, and the  wave funct ion f o r  each successive eigen
value has one more node than i t s  predecessor. The wave,function corresponding 
t o  the itheigenvalue thus has i - 1 nodes f o r  any Vo. This f a c t  makes it 
possible  t o  follow the  change i n  behavior of t he  i t h  s t a t e  of the  system i n  
configuration space as Vb var i e s  and permits a connection t o  be made between 
high-f ie ld  and zero- f ie ld  s t a t e s .  O f  course, t h i s  t e s t  is  not a s u f f i c i e n t  
one, s ince zero- f ie ld  s t a t e s  could cross  one another as t h e  magnetic f i e l d  in
creases .  Thus, some add i t iona l  f ac to r s  w i l l  be considered i n  examining the  
behavior of t he  wave funct ion t o  support the iden t i f i ca t ion  with indicated 
zero-f ie ld  states i n  f igu res  3 and 4. 

I n  the  discussion which follows, it should be noted t h a t  the  number of 
nodes i n  the  wave funct ion for the  20-atom chain f o r  even and odd solut ions is ,  
respect ively,  twice the  number t o  t he  r i g h t  of x r  = 0 and twice the  number 
plus  1. 

Another point  requires  some c l a r i f i c a t i o n .  For a given eigenstate ,  Ah  is 
determined by matching the  wave function a t  the  boundary between the  las t  w e l l  
and the last  h i l l  (where x '  = loa + w ) .  Naturally, the vanishing of t he  de
terminant i n  appendix A is j u s t  the  condition required t o  ensure t h a t  % 
would be exact ly  t h e  same fo r  t h i s  e igens ta te  i f  it had been computed by match
ing the  dA(x')/dx' r a the r  than A(x ' )  i t s e l f  a t  t h i s  boundary. If the  deter
minant f o r  a given eigenstate  i s  s u f f i c i e n t l y  c lose t o  zero, then dh(x ' ) /dx '  
i s  smooth everywhere. If it i s  not s u f f i c i e n t l y  c lose  t o  zero, A(x' ) is  smooth 
but  dA(x')/dx' i s  discontinuous a t  x' = 10a + w and the  amplitude of A(x')  
is  inordinately la rge  i n  t h i s  region. 

It turned out t h a t  it w a s  not  possible  t o  match the  boundary conditions 
with needed accuracy f o r  a l l  the eigenvalues. For t h i s  reason, a somewhat 
incomplete s e t  of wave functions is .presented, i n  the  sense t h a t  t he  same s t a t e  
can not always be followed f o r  d i f f e r e n t  magnetic f i e lds .  The f igures  show 
wave functions f o r  s t a t e s  s a t i s fy ing  conditions as c lose ly  as were ava i lab le  
under the  circumstances. 

I n  t h i s  connection, it should be mentioned t h a t  t he  odd wave functions 
were most f requent ly  inaccurate,  and therefore ,  a l l  of the  f igures  show only 
even s t a t e s  except where otherwise indicated.  As  mentioned i n  the preceding 
sect ion,  the bottom of t h e  second band is  always an odd s t a t e .  It i s  necessary 
t o  keep i n  mind that �he lowest even state i n  the second band that is shown i n  
severa l  of the  f igures  i s  ac tua l ly  the  second s t a t e  i n  the  second band. 
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Figure 5. -Wave functions for eigenstates at a magnetic field strength of 3.1 kilotesla; Vd, 0.0765 

electron volt. 

The general  fea tures  of the wave functions f o r  t he  system w i l l  be examined 
i n  some d e t a i l .  Figure 5 i s  typ ica l  and represents the  system i n  a f i e l d  of  
3.1 k i l o t e s l a  (31 megagauss, VA = 0.0765 ev) .  The lowest s t a t e  i n  the f igu re  
is  f o r  E = 10.75 e lec t ron  vo l t s .  This s t a t e  i s  i n  the  f i r s t  band and has 
18 nodes. The amplitude of t h i s  s t a t e  has a d e f i n i t e  maxi" a t  about 27 ang
stroms and i s  very small f o r  x '  < 22 angstroms. 

The next s t a t e  shown i s  a t  the top of the f i rs t  band ( E  = 12.34 ev ) .  The 
general  appearance of t h i s  wave f inc t ion  i s  qui te  similar t o  t h a t  of the  pre
ceding s t a t e  shown except t h a t  the maxi" i s  even more pronounced and i s  
s h i f t e d  s l i g h t l y  t o  x '  = 30 angstroms. 

The state following t h i s  one, although ra ther  c lose t o  it i n  energy 
(E = 12.89 ev),  demonstrates a sharply d i f f e ren t  character .  For t h i s  s t a t e  the  
amplitude i s  suddenly qu i t e  la rge  i n  the  v i c i n i t y  of x '  = 0 (although the  
maximums a r e  not as pronounced as f o r  t he  two preceding s t a t e s )  and i s  very 
small f o r  x '  ,> 1 7  angstroms. 

The last state shown i n  f igu re  5 i s  f o r  E = 15.29 e lec t ron  vo l t s  and i s  
i n  the  middle of the second band. It shares with the  preceding s t a t e  a l o w  
amplitude near t he  end of t h e  chain and a comparatively la rge  one near t he  
center .  
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Some semiquaqtitative statements may be made about t h i s  behavior ins tead  
of a f u l l  quan t i t a t ive  explanation. F i r s t  of a l l ,  an explanation may be sought 
from the  viewpoint t ha t ,  i n  the  f i rs t  band, t he  system i s  l a rge ly  control led 
by the  magnetic f i e l d  with even the  r e l a t i v e l y  deep (10 ev)  "periodic" wel l  
having no more than a modulating e f f e c t  on the  basic  f r e e  e lec t ron  i n  a mag
n e t i c  f i e l d  behavior. In  t h i s  framework, it i s  proper t o  consider t he  cyclo
t ron  radius  .lik/rnuc as the  primary parameter governing the  motion of the  elec
t ron .  For a f i e l d  of 3.1 k i l o t e s l a  (31 megagauss), t h i s  quant i ty  is  

r = 6.35 4-i 
Where n i s  t h e  number of t he  s t a t e  i n  equation ( 9 ) .  

The state E = 10.75 e lec t ron  v o l t s  i s  t h e  19th  s t a t e ,  and s o  r should 
be about 27.3 angstroms, which i s  qui te  c lose  t o  the  peak of 27  angstroms f o r  
t h i s  s t a t e .  The s t a t e  a t  the  top  of the  f i r s t  band i s  the  23rd s t a t e ,  and, 
f o r  it, r w i l l  be about 30.8 angstroms, which is s t i l l  not  far from the  sharp 
peak a t  30 angstroms. 

The next s t a t e ,  being a t  (or near )  t he  bottom of the  second band, may be 
expected t o  behave qu i t e  d i f f e r e n t l y  s ince it i s  on the  other s ide  of what 
would be the  Br i l lou in  zone f o r  a t r u l y  per iodic  po ten t i a l  ( see  f i g .  3 ( e ) ) .  It 
might be expected t o  behave more l i k e  a s t a t e  near t he  bottom of t h e  f i rs t  
band, so  s ince it i s  the  second s t a t e  ( t h e  l o w e s t  s t a t e  i n  the  second band i s  
odd), n may be set equal t o  2 i n  obtaining an estimate of r .  The r e su l t i ng  
value of about 10 angstroms i s  not far f rom the  a c t u a l  region of la rge  ampli
tude f o r  t h i s  state. The f i n a l  s t a t e  i n  t h e  middle of the  second band behaves 
l i k e  a s t a t e  t h a t  is  less bound by the  magnetic f i e l d  than the  others,  and con
s ider ing  the  f a c t  t h a t  i t s  energy is  comparatively high, t h i s  i s  not  sur
p r i s ing .  

Another way of looking a t  the  problem i s  t o  consider the  motion i n  the 
kx - ky plane. S t a t e s  w e l l  below the  top of t he  f i r s t  band have o r b i t s  i n  
k-space t h a t  do not come t o o  c lose t o  the  Br i l lou in  zone. The s t a t e  a t  the  
top  of the  f i rs t  band has an o r b i t  i n  k-space much of which i s  near the  
Br i l lou in  zone boundary. On the  other hand, the  s t a t e s  near t he  bottom of the  
second zone have o r b i t s  i n  t he  second Br i l lou in  zone and, i n  the  reduced zone 
scheme, these a r e  again not very close t o  the  zone boundary. 

The same general  type of behavior i s  shown i n  f igu re  6 for s t a t e s  a t  
H = 6.2 k i l o t e s l a  (62 megagauss) . It is  noted t h a t  r = 21.8 angstroms for 
n = 2 3  a t  t h i s  f i e l d  and again t h i s  i s  very c lose  t o  t h e  pos i t ion  of the  sharp 
maxi" f o r  the top  of t h e  band. The simple p i c tu re  fa i l s  for. the s t a t e  i n  
the  middle of the  band though, s ince no very c l e a r  maximum is  present,  and 
secondly, r would be about 1 9  angstroms, which i s  a r a the r  l o w  amplitude point  
here .  Nevertheless, the ove ra l l  behavior i s  qu i t e  s imi la r  t o  t h a t  shown i n  
f igu re  5 .  

Some addi t iona l  weight t o  t h i s  i n t e rp re t a t ion  is furnished by f igures  7 
t o  9. Figures 7 and 8 show some odd wave functions t h a t  adequately s a t i s f y  the  
matching requirements. Figure 7 shows the  s t a t e s  a t  H = 3 . 1 k i l o t e s l a  
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Figure 6. -Wave functions for eigenstates at a magnetic field strength of 6.2 kilotesla; Vd, 0.3061 
electron volt. 
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Figure 7. - Odd wave functions in f i rst  band; magnetic fleld strength, 3.1 kilotesla. 
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Figure 8. -Odd wave function in f i rst  band; magnetic field strength, 4.4 kllotesla. 
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Figure 9. - Even wave functions for well depth of 5 electron volts; magnetic field strength, 
5.9 kllotesla. 

(31megagauss, compare with fig. 5). The wave functions would fit in properly 

with those shown in figure 5, and r would be 24 angstroms for the state in 

the middle of the band (not very good agreement) and 30 angstroms for the state 

near the top of the band (quite good agreement). 


Figure 8 shows an odd wave function in the middle of the first band for a 
field of 4.4kilotesla (44megagauss). The peak is at 21 angstroms, which is 
in very good agreement with r for this field strength. 

Some wave functions for a smaller well depth ( V o  = 5 ev) are shown in fig
ure 9. Again the same general features as in figures 5 and 6 are exhibited. 

Thus, it would appear that the general behavior of the system described 

for figure 5 occurs under a variety of conditions. The picture used as a de

scription is too simple to be expected to apply uniformly to a more complete 

examination of wave functions for all combinations of well depth and magnetic 

field strength. Nevertheless, it appears to be somewhat useful in a limited 
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(a) States well below Blount breakdown; Vb, 0.1148 electron volt: magnetic fleld strength, 
. 4 3.8~ kllotesla. 
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(b) States higher than in (a), but sti l l  below Blount breakdown; Vb, 0.191 electron volt (even); 

magnetic field strength, 4.9 kllotesla.
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(c) States "near" Blount breakdown; Vd, 0.268 electron volt (even); magnetlc fleld strength, 

5.8 kllotesla. 
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Id) States past Blount breakdown; Vd, 0.306 electron volt; magnetlc field strength, 6.2 kllotesla. 

Figure 10. - Blount breakdown in model; Vo, 5 electron volts. Dash-dot Ilne, middle of f lrst 
band; solid line, top of first band; dotted line, bottom of second band. 
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qua l i t a t ive  descr ipt ion.  

Blount breakdown, which was discussed i n  the  sec t ion  MAGNETIC BREAKDOWN IN 
MODEL can a l s o  be examined f o r  i t s  usefulness i n  predict ing sharp changes of' behavior i n  the  model. Figure 3 contains curves t h a t  show a t  which energies 
Blount breakdown is  t o  be expected on the  bas i s  of equation (59)  or (60) .  In 
examining Blount breakdown, changes must not  r e a l l y  be sought i n  the  behavior 
of s t a t e s  that a r e  r a the r  c lose  t o  one another .  Blount's c r i t e r ion ,  as given 
by equ t i o n  ( 6 0 ) ,  a c t u a l l y  states the  breakdown occurs when E is  "near" 
(2V;))1?2/E2 therefore ,  states near t h i s  quant i ty  must be compared with others  
r a the r  welf'separated from them. 

I n  order t o  t e s t  Blount breakdown i n  the  model, a s e t  of "DN t e s t ed"  
eigenvalues ( see  appendix A )  f o r  a f ixed  value of H i s  required over a r a the r  
wide energy range. The r e s u l t s  of the computations were such t h a t  such s e t s  
were ava i iab le  only f o r  t he  wel l  depth Vo = 5 e lec t ron  v o l t s .  Thus, f i g 
ure  3 ( c )  should be r e fe r r ed  t o  i n  order t o  see where the  s t a t e s  l i e  r e l a t i v e  t o  
the  Blount l i n e .  

. .  
It can be seen from f igu re  3 (d )  that a l l  the  s t a t e s  shown i n  f igures  5 

t o  9 a r e  wel l  below Blount breakdown. These f igures ,  therefore ,  can furn ish  no 
information a s  t o  the  v a l i d i t y  of the Blount c r i t e r i o n  f o r  the  model. 

Figure 10 shows wave functions f o r  a wel l  depth of 5 e lectron v o l t s  f o r  
s t a t e s  r a the r  wel l  before, near, and a f t e r  Blount breakdown. Figure lO(a)  
shows s t a t e s  f o r  VO = 5 e lec t ron  vo l t s  a t  H = 3.8 k i l o t e s l a  (VO = 0.1148 e v ) .  
These s t a t e s  share a fea ture  with those s t a t e s  i n  f igures  5 t o  9 of all being 
below Blount breakdown ( see  f i g .  3 ( c ) ) .  As  i n  the  aforementioned f igures ,  the  
states f lanking the  energy gap demonstrate d i s t i n c t l y  d i f f e ren t  behaviors. ( I t
should be noted, however, t h a t  t he  ro l e s  of t he  s t a t e s  have been reversed i n  
comparison with the  e a r l i e r  f i gu res .  The s ignif icance of t h i s  r eve r sa l  i s  not 
c l e a r  a t  p resent ) .  Next, states a t  H = 4.9 k i l o t e s l a  (Vb = 0.191 ev)  a r e  
shown i n  f igu re  10 (b ) .  From f igu re  3 ( c )  it may be noted t h a t  the  s t a t e s  f lank
ing the  gap, while s t i l l  below Blount breakdown, a r e  c loser  t o  it than the  
s t a t e s  i n  f igure  l O ( a ) .  The main fea ture  of i n t e r e s t  i n  t h i s  f i gu re  i s  t h a t  
the difference between the flanking s t a t e s  i s  smaller than i n  f igu re  l O ( a ) .  
The amplitude of  the  s t a t e  a t  the bottom of the  second band i s  grea te r  here and 
f o r  A' = 1.5 angstroms i s  qu i t e  comparable t o  t h a t  of  t he  s t a t e  a t  the top of  
t he  f i rs t  band. The l a t t e r  s t a t e ,  i n  turn,  has a grea te r  amplitude near the  
end of the chain than the state i n  f igure  l O ( a ) .  The t r a n s i t i o n  i s  completed 
a t  H = 5.8 k i l o t e s l a  (Vb = 0.268 ev ) .  A s  seen i n  f igure  3 (c ) ,  the  Blount l i n e  
passes through the  gap a t  t h i s  f i e l d ,  s o  both f lanking s t a t e s  a r e  ac tua l ly  near 
Blount breakdown. These s t a t e s  a r e  shown i n  f igu re  1O(c).  It may be noted 
there  t h a t  the  differences between the  flanking s t a t e s  a r e  g rea t ly  diminished 
i n  comparison with cases shown below the Blount l i n e .  Incidental ly ,  the  ampli
tudes of the f lanking s t a t e s  a re  now i n  the same r e l a t i v e  pos i t ion  as those a t  
Vo = 10 electron vo l t s ,  which were a l l  below Blount breakdown. Final ly ,  f i g 
ure  10(d) shows s t a t e s  pas t  Blount breakdown. 

Thus, it would appear t h a t  the periodic p a r t  of  the  po ten t i a l  exer t s  a 
strong influence on the system fo r  s t a t e s  w e l l  below Blount breakdown, the  
s t a t e s  corresponding t o  the  ones flanking the  f i rs t  gap i n  the  zero- f ie ld  band 
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s t ruc tu re  cons is ten t ly  exhibi t ing s ign i f i can t ly  d i f f e r e n t  behavior. On t h e  
other hand, as Blount's c r i t e r i o n  begins t o  be s a t i s f i e d ,  t h e  periodic poten
t i a l  has a much weaker e f f ec t ,  and the changes between s t a t e s  flanking t h e  
energy gap become far l e s s  pronounced. 

The remaining type of breakdown, s t rong breakdown, has not been inves t i 
gated i n  d e t a i l  fo r  reasons t h a t  would seem t o  be obvious. The s t rong break
down l i n e  i n  f igu re  3, for t he  most,par t ,  involves states that l i e  s o  f a r  above 
the  bottom of t h e  second band %hat they would l i e  i n  the  continuum w e r e  it not  
f o r  t h e  box property of t h e  chain. A f e w  wave functions i n  t h i s  region were 
computed and showed only the  t y p i c a l  behavior c h a r a c t e r i s t i c  of "free p a r t i c l e s  
i n  a box." These wave functions,  therefore ,  would not  appear t o  contr ibute  
markedly t o  an understanding of breakdown i n  the  model. 

S-Y OF RESULTS 

A one-dimensional model has been examined i n  an attempt t o  follow magnetic 
breakdown i n  some d e t a i l .  The model i s  t h a t  of an e lec t ron  i n  a uniform mag
n e t i c  f i e l d  Hz and a one-dimensional chain 2 0  atoms long of periodic square 
wells with i n f i n i t e  p o t e n t i a l  a t  each end. Exact solut ions have been obtained 
f o r  both the  eigenvalues and t h e  wave functions f o r  a r b i t r a r y  values of w e l l  
depth, wel l  width, atomic separation, and magnetic f i e l d  s t rength.  Computa
t ions  have been ca r r i ed  out f o r  severa l  wel l  depths from 1t o  10 e lec t ron  v o l t s  
and f o r  severa l  magnetic f i e l d  s t rengths .  Although the  magnetic f i e l d s  were of 
t he  order of tens  of megagauss, it has proved possible  t o  assoc ia te  these 
s t a t e s  with corresponding zero- f ie ld  states. 

Three types of breakdown were considered f o r  app l i cab i l i t y  t o  the  model. 
The simplest  type w a s  one i n  which the  magnitude of the  magnetic p a r t  of t h e  
p o t e n t i a l  was equal t o  t h e  depth of the  "periodic" p a r t  of the po ten t i a l .  
Another type was one i n  which the f i e l d  was s o  l a rge  t h a t  the  increase i n  the  
magnetic p a r t  of the p o t e n t i a l  over an atomic dis tance w a s  equal t o  t he  we l l  
depth. The t h i r d  type of breakdown examined was Blount breakdown i n  which 
Y L ! J ~ E ~ / E ~i s  compared with 1. 

An examination of the wave functions f o r  various conditions showed t h a t  
below Blount breakdown the  system i s  cont ro l led  by the  periodic pa r t  of the  
po ten t i a l  and the accompanying band s t ruc tu re .  The most pe r s i s t en t ly  apparent 
cha rac t e r i s t i c  of these r e s u l t s  i s  t h a t  a t  a f ixed  magnetic f i e l d  there  i s  a 
sharp change i n  behavior of  the  wave functions i n  going from a s t a t e  corre
sponding t o  the  top of  the  f i rs t  band i n  z e r o  magnetic f i e l d  t o  a s t a t e  corre
sponding t o  the  bottom of t h e  second band i n  the zero- f ie ld  s i t u a t i o n .  This 
behavior seems t o  admit an in t e rp re t a t ion  i n  terms of a change of o r b i t s  i n  
k-space between s t a t e s  on e i t h e r  s ide  of a Br i l l ou in  zone. 

When the magnetic f i e l d s  become l a rge  enough t o  cause the  system t o  under
go Blount breakdown, the  aforementioned differences between s t a t e s  f lanking t h e  
zero- f ie ld  energy gap become at tenuated t o  a la rge  extent .  Consequently, i n  
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t h i s  case, the periodic pa r t  of the po ten t i a l  plays a f a r  l e s s  decisive r o l e  i n  
determining the behavior of the  system. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, October 1, 1964 
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APPENDIX A 

DEBIVATION O F  EIGENVALUES 

A s  mentioned i n  the  sec t ion  SOLUTION O F  WAVE EQUATION, BE i s  chosen as 
a r b i t r a r y .  Then the  requirements of cont inui ty  of A(x') and (d/dx')A(x') a r e  
s a t i s f i e d  by matching the  wave funct ion a t  every boundary. The boundary be
tween the  0th h i l l  and the  0th well occurs at  x' = w. Thus, 

and 

Subs t i tu t ing  equations (44)  t o  ( 4 7 )  i n t o  equations ( A l )  and ( A 2 )  r e s u l t s  i n  

0Bw COS wGE = BE ( A 3  1 

and 

-BEG; s i n  W G ~= A: 

Both equations ( A 3 )  and ( A 4 )  a r e  independent of t he  value of gk. The remain
der of t he  matchin equations a r e  considered next.  A t  the  boundary between the  
n th  we l l  and the  ngh h i l l  ( t h i s  boundary i s  the r i g h t  boundary of the  wel l  
region and the  l e f t  boundary of the  h i l l  region) ,  x' = na + w and it i s  there
fo re  required t h a t  

Ar(na + w )  = A:(na + w )  (A51 

and 

d Ax(na + 

By examining the form of  h,w(x') and * ( X I )  from equations (45) and (46), 
it is  noted t h a t  % ( X I )  involves functions of  x' - (na - w) ,  whereas % ( X I )  

' i s  expressed as a function of  X I  - (na + w ) .  Thus, Ax(na + w )  w i l l  be a 
function of 2w and %(na + w )  w i l l  be a function of 0. Therefore, t he  match
ing equations w i l l  take the  form 
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BnGn 

(q /Gx)s inh  2wG: + Bg cosh 2wG: gx < 0 

q ( 2 w )  + B: g: = 0 = Bk (A7 1 

(q/G:)sin 2wGx + BE cos 2wGx g; > 0I
and 

Both equations (A7) and ( A 8 )  a r e  independent of t he  value of $. 
In  a ve similar way, the  form of t he  matching equations a t  t h e  boundary 

between the zhw e l l  and the  nth + 1 wel l  (where x '  = (n  + 1)a - w )  can be 
r ead i ly  express.ed as 

h h  h(An/Gn)sinh 2hGnh + Bnh cosh 2hGnh 
gn < 0) 

Ah(2h) + BEn n 

($/Gg)sin 2hGE + Bg cos 2hGnh 

. 
A: cosh 2hGk + h h  s inh ZhGg 

A: I]= AX+1 

h h  h hcos 2hGE - BnGn s in  2hGn gn > 0 

Both equations ( A 9 )  and (A10) a re  independent of the  value of g:tl. (The
simple form of the  r i g h t  s ide  of these equations is one of the  main reasons f o r  
center ing the wave funct ions as i n  eqs. (45) and ( 4 6 ) ) .  

These equations represent  a l l  of t h e  conditions except the  matching a t  the  
las t  boundary i n  t h e  chain. In  the  ( N  + l)thh i l l ,  use must be made of equa
t i o n  ( 4 7 )  f o r  ( X I )  a t  x '  = Na + w. This value of  x '  w i l l  make $ $ ( X I )  a 
function of -2h. Therefore, matching a t  t h i s  l a s t  boundary y ie lds  the  fol low
ing : 
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5 sinh 2wGw + Bw cosh 2 w G i  = N N 
G; -

5 s in  2wGw + Bw cos 2 w G i  = ”GNW 


A i  cosh 2 h G i  

$ cosh 2wGE + q G E  sinh 2wG; = {:cos 2 h 3  

A: cosh 2 h 4  

A: = { #  ( A 1 2 )  

,9cos 2hG; 

$ cosh 2hGNh 

cos 2 h G i  
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I n  order t o  obtain the  determinantal  compat ib i l i ty  conditions from these 
equations, it w i l l  be convenient t o  introduce some notat ion t h a t  w i l l  enable 
the  three  possible  expressions for t he  matched wave funct ion (which depend on 
the  values of g )  t o  be condensed i n t o  a s ing le  expression. 

A C preceding an  A or B w i l l  denote t h e  coe f f i c i en t  of t h a t  A or 
B i n  t he  appropriate  matched wave funct ion A, and C'A or C'B w i l l  denote 
the  coe f f i c i en t  of t h e  A or B i n  t he  appropriate  matched dh/zjx'. A sub
s c r i p t  L o r  R on t h e  C w i l l  denote whether t he  matching is  a t  the  l e f t  
o r  r i g h t  boundary, respect ively,  of the  region i n  which t h e  wave funct ion i s  
operating. Thus, w i s  t h e  r i g h t  boundary of t he  Oth w e l l  and the  l e f t  
boundary of t he  Oth h i l l ,  s o  t h a t  equations (A3)  and (A4) can be wr i t ten  

BwC Bw - BE = 0
O R 0  

where 

I n  a similar way, it is  seen from equations (A7) and ( A 8 )  t h a t  it is  possible  
t o  mite 

+ B ~ CA W C ~  ' B ~- h = o 
n n n R n  

s o  that 

s inh  2wGz/Gz 
0 

2w 
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I 


-Gg s i n  2wGz 

b
The superscr ipts  + on the  C ' s  r e f e r  t o  the  s ign of t h e  appropriate g. 
Equations ( A 9 )  

where 

and (A10) may be wr i t t en  i n  the  same way. 

A ~ ~ A ;  + B ~ ~ B :  B;+~ = o 

sinh 2hGn/Gnh h  

rcosh 2hGnh 

k o s  Z h q  

s inh  2hG: 

Final ly ,  equations ( A l l )  and (A12) become 

Thus, 

(A22  
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-C'Bh 

where C+$, CR$, Ck;, and C A G  have the same form as equations ( A 1 9 )  
and (A20) with n = N and where 

r-sinh 2hGg/Gg 


h
- Icosh 2hGN 


0 
Ci+Ai = 1 

h
cos 2hGN 


The usual argument is now invoked, which says that if equations ( A 1 3 ) ,  
( A 1 4  , ( A 1 7 ) ,  (A18) ,  (AZZ), (A23), ( A 2 7 ) ,  and (A281  are to hold simultaneous .y, 
then the determinant of all the coefficients must-vanish. 'This is the determi
nantal compatibility condition that is being sought. Equation ( A 3 1 )  shows this 
determinant, which will be denoted by I ~ N .  The columns are labeled according 
to the A or B whose coefficient appears in DN. It will prove convenient 
to start with the equation f o r  the last boundary and work toward the Oth well. 

A$ A{ 

+CLA$ -c& 

+CLAk - C p N  

0 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 1 

0 1 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 . . .  0 0 

0 0 . . .  0 0 

0 0 . . .  0 0 

0 0 . . .  0 0 

-CR$-l -CRBZ-l . . . 0 0 

-c&_l . . . 0 0 

0 0 . . . -Cp$ -CRBk 

0 0 . . . -C&k R O  

0 0 . . .  0 1 

B; 

0 

0 

0 

0 

0 

0 

0 

0 

-cos WGw
0 
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The determinant D~J  is  (4N + 2 )  X ( 4 3  + 2 ) .  It w i l l  be evaluated i n  the 
usual way be expandlng it i n  minors. By r e fe r r ing  t o  ( A 3 i ) ,  it i s  seen that 

-c& -c& 0 0 0 0 . . .  0 0 0 

0 1 0 0 . . .  0 0 0 

1 0 0 0 . . .  0 0 0 

0 0 -cR%-l . . . 0 0 0 

0 0 1 0 -CAE& . . . 0 0 0 
DN = C L 4  

0 0 0 0 . . .  -C Ah -CRBk 0
R O0 


0 	 . . . -CAAt -CAB: 0 

0 . . .  0 1 -cos WG; 

0 . . .  1 0 GE s i n  wGE 

0 0 0 0 

0 0 00 


0
0 0 
 0 

0 0 . . .  0 0 0 

0 0 . . .  0 0 0 

1 0 0 . . .  0 0 0 

0 0 -CRBim1 . . . 0 0 0I 


0 0 0 
 . . . 0 0 0L 

- c;$ 

0 0 . . . -C‘Ah -CRBk 0
R O  

0 . . . - C i A k  -CiB; 0 

0 0 


0 0 


0 0 


3 0 

0 


0 


0 


0 . . .  0 1 -cos wGTi0 

0 . . .  1 0 Gw0 sin wGZ 

It may be observed t h a t  the  determinants which a r e  the coef f ic ien ts  of 
and 

C f i b  
CLAh, respect ively,  axe i d e n t i c a l  except for t h e i r  f i rs t  rows. The coef

f i c i e n t  of CLA; is  denoted by SE, while the  coe f f i c i en t  of CLG i s  denoted 

by %. An attempt a t  descr ip t ive  notat ion i s  being made here s ince  S z  and 
are ,  respect ively,  determinants i n  which the upper r i g h t  terms a r e  -CRA{ 

--w 
SN 

and - C A S .  With t h i s  notat ion 




Now l e t  % be reduced t o  see i f  a pa t t e rn  can be found whereby the 
e n t i r e  determinant can be evaluated readi ly .  Expanding % by minors yields  

h
- C R B N - ~  0 . . .  0 0 

-4%-1 0 . . .  0 0 

1 -cR$-l . . . 0 0 

0 -c;G-l . . . 0 0 

7 's = -CAW 
N 

0 0 . . .  -<B$ 6 
0 0 . . .  -CiBg 0 

0 0 . . .  1 -cos WGrj 

0 0 . . .  Q ~ r js i n  WG; 

0 0 0 0 . . . -C& -C,B$ 6 
(A341  

0 0 0 0 0 . . . -CAB: 0 

0 0 0 0 0 . . .  0 1 -cos wGE 

0 0 0 0 0 . . .  1 0 GZ s i n  w G ~  

Expanding each remaining determinant by minors again yields  

where G-l and G-l have a readi ly  deducible connotation analogous t o  S g  
and 3, respect ively.  It should be noted t h a t  the determinants Sa-l 
and s N - l  have a s t ruc ture  much l i k e  that of S$ and G; they merely begin 

with -C&h-l and -CR%-l' h  instead of -CR$ and -CiG, respectively,  and 

a r e  of dimension t w o  l e s s  than E$ and 3. 
Similarly, expanding by minors twice yields  
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c 


= -c+; 

0 

0 

0 


1 0  

-CR% 

1 


0 

0 

+ . 
0 

0 


0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 0 . . .  -CRAh -CRBg 0 

0 0 0 . . .  -4.8 0 

0 0 0 . . .  0 1 -cos wGw
0 

0 0 0 . . .  1 Q G: s i n  WG: 

0 0 0 0 . . .  0 0 0 

0 . . .  0 0 0 

0 1 -CRB"N1 . . . 0 0 0 

1 0 . . . 0 0 0 

0 0 0 . . . -C AhR O  -CRB$ 0 

0 0 0 . . . -C&E -CAB: o 

0 0 0 . . .  0 1 -cos WGW
0 

0 0 0 . . .  1 o G; s i n  WG; 

-hSince the  form of G-l and %-1 is s o  similar t o  the  form of 

and q,respect ively,  it i s  c l e a r  t h a t  a general  procedure now e x i s t s  for 
expanding % by minors i n  successive s teps .  Thus, 

w+-l w hs; = -c$-nsn,l - cRBnsn,l (A38 1 
-
SW = -C'Aw$ n R n n-1 - CABZSg-l (A39 1 

and 
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The process continues i n  t h i s  fashion u n t i l  Sb and % are reached. 
These have the  s p e c i a l  form indicated by the  three columns and four  rows i n  the  
lower r i g h t  corner of a l l  of t h e  previous determinants. Thus, 

-CRAg -CRBE 0I 
Ws4;= 1 -COS wGOI o

I o G: s in  WG: 

or 

s; = - c R A ~ ; G ~s i n  WG; + cRBt; cos W G ~  

and 

-C&$ -CAB: 0 

-h
so = 0 1 -cos wG; 


1 
 0 Gw s i n  wGw
0 0 

s o  t h a t  

-h ' h  W
so = - * c h w  s i nGW G ~+ % B ~  cos W G ~  (A431
~ ~ ~ 

Actually, equations (A42) and (A43) can be made cons is ten t  with equa
t ions  (A38) t o  (A41) i f  t h e  following iden t i f i ca t ion  is  made: 

s; = -cos WG; (A441 

P0 = cWsin  WGW0 (A45 )0 

I n  going over what has been done, it may be noted t h a t  a procedure has 
been developed f o r  evaluating 
working toward the upper l e f t  corner.  

DN by s t a r t i n g  a t  t he  lower r i g h t  corner and 
Since t h i s  i s  a somewhat unusual proce

dure, there  may be some merit  i n  summarizing it. 

The terms Vo and Vb a r e  f ixed  and then the  eigenvalue f o r  such a 
V(x ' )  i s  determined as follows: A t r i a l  value of E is chosen, G; i s  
evaluated, and then Sx and % are obtained from equations (A44)-. and (A45). 
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These values a r e  then subs t i tu ted  i n t o  equations (A40) and (A41) and by succes
s ive  applicat i o n  of equations ( A 3 8 )  t o  (A41) a l l  of t h e  s's and CIS through

-wSx and SN are obtained. Then the  quant i ty  i n  equation ( A 3 3 )  is found, 
% = C L A i 3  - CLAiS;, and a decision i s  made as t o  whether . i t  is  s u f f i c i e n t l y  
c lose  t o  zero. If it is, the  t r i a l  value of E is  chosen t o  be an eigenvalue 
f o r  the  f ixed Vo and Vb assumed. If the  DN s o  formed is not c lose 
enough, the e n t i r e  procedure is repeated with a new t r i a l  value of E u n t i l  
a s u f f i c i e n t l y  small Q is obtained. Actually, there  are many eigenvalues 
f o r  each given Vo and V;, as can be seen from f igu res  3 and 4. 

It i s  r ead i ly  seen that f o r  odd A(x ' )  the  only change t h a t  need be made 

i n  the aforementioned procedure i s  t h a t  A;(x'.) = A 8  s i n  GZx'/G8 and t h a t  Sx 
and w i l l  be given by 

= -COS wGE (A47 1 
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APPENDIX B 

DERIVATION OF WAVE FUNCTION 

Once having obtained an eigenvalue, t he  unnormalized wave function f o r  
that eigenvalue is  r ead i ly  obtained from the  matching equations shown i n  
appendix A. Since BZ is  going t o  be used as the  a r b i t r a r y  amplitude, t he re  
immediately r e s u l t s  (from eqs.  (A13)  and (A14)) 

A$ = BECAB; = (-GE s i n  WGW)BW0 0  

h w wB~ = B ~ C ~ B ;= (COS W G ~ ) B ~  

Thus, 

h w  = W s i n  W G ~A ~ / B ~- G ~  W 

B$B; = cos WG; 

Equations ( B l )  and ( B 2 )  a r e  then subs t i t u t ed  i n t o  equations ( A 2 2 )  
and ( A 2 3 )  with n = 0, the  r e s u l t s  subs t i tu ted  i n t o  equations (A17)  and ( A 1 8 ) ,  

and these equations used successively u n t i l  AN/Bow and %/Bow w w  a r e  obtained. 
A t  t h i s  point  A$ can be obtained from equations (A27)  or (A30). If the  value 

of DI,J used t o  f i n d  the  eigenvalue w a s  s u f f i c i e n t l y  s m a l l ,  then the  values of 
h wAN/BO obtained from these two equations w i l l  be c lose enough. If l ? ~were 

hac tua l ly  0, then t h e  values of AN using the  two equations would be iden t i ca l .  

The s e t  of coe f f i c i en t s  of A(x') i n  each i n t e r v a l  having been obtained, 
the  (unnormalized) wave funct ion a t  any given value of x' can be computed. 
The normalization of A(x') would allow a comparison t o  be made between the  
r e l a t i v e  probabi l i ty  dens i t i e s  of eigenfunctions belonging t o  d i f f e ren t  eigen
values i n  any region. This procedure i s  ca r r i ed  out i n  appendix C .  

For odd A(x'), Aw w i l l  be used as the  a r b i t r a r y  amplitude, and instead 
of equations (B1)  and ?B2), there  w i l l  be 

BE/A: = sin(wG:)/GE 

The remainder of t he  procedure i s  unchanged. 
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APPENDIX c 

NORMALIZATION O F  WAVE RINCTION 

The wave functions w i l l  be normalized i n  the usua l  way; t h a t  is ,  the  
otherwise a r b i t r a r y  constant BE is  determined so  t h a t  

A s  has been seen, A(x ' )  assumes a d i f f e ren t  form i n  each i n t e r v a l  and, 
within a given in t e rva l ,  f o r  each s ign of the  appropriate  g for t h a t  i n t e r 
va l .  Whether the  so lu t ion  be even o r  odd, it w i l l  s t i l l  be t r u e  t h a t  

Furthermore, the r i g h t  s ide  may be broken up i n  the  following way ( taking 
account of the  f a c t  t h a t  A(x') = 0, x' 2 ( N  + 1). - w ) :  

The A( x') i n  each i n t e r v a l  may be replaced by i ts  spec ia l  form a s  given i n  
equations (45)and (46), and the  normalization condition obtained i n  the form 

In  appendix B, a procedure w a s  displayed f o r  obtaining each of the  coef

f i c i e n t s  An", Bg, e, and Bnh i n  terms of BX. It is c l ea r  then tha t ,  i f  a l l  
coef f ic ien ts  be expressed i n  terms of BE, the  wave funct ion i n  each i n t e r v a l  
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can be wr i t t en  as Bzfx(x ' )  or Bzfg(x ' ) ,  where f E ( x ' )  and f k ( x ' )  are the 
forms of  q ( x ' )  and * ( X I ) ,  r espect ively,  after the An", BE, e, and Bg 
have been so  expressed. 

If 

and 

there  r e s u l t s  a t  once (using eq. (C4)) 

n=O n-1 

The remaining task i s  t o  f i n d  the  F ' s .  The form of f z ( x ' )  i s  always 
cos G ~ x ' ;  therefore ,  

Each of the remaining F ' s  may have severa l  forms depending on the value of 
g t h a t  goes with the  f i n  question. It i s  r ead i ly  ascer ta ined t h a t  the 
change of var iables  

v = x '  - (na - w )  f o r  a wel l  region (c10) 

p = x '  - (na + w )  f o r  a h i l l  region ( c m  
w i l l  s implify the algebra involved i n  evaluating the  F ' s .  With these changes, 
there  remains only the evaluation of the  following in tegra ls :  
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(~12.a)  

dp = h (sinh 4 h G k  
c o s h 2 G $  

4 h G k  -I- 1) ( C 1 2 b )  

( C 1 3 a )  

dp = 2h ( C 1 3 b  ) 

( C 1 3 c  ) 

( C 1 4 b )  

-- (l- cos 4hGE) ( C 1 4 c )  
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Equations ( C 1 2 )  t o  ('214) are the  forms involved when g: i s  negative, 
zero, and posi t ive,  respec t ive ly .  Corresponding we l l  i n t eg ra l s  a r e  exact ly  the  
same with w replacing h each t i m e  t he  l a t te r  occurs. 

If the a ' s  and p ' s  a r e  defined as t h e  r a t i o s  of t he  A's and B ' s  t o  
BZ s o  t h a t  

"Boh w  
= BE 

then 

where [ a ] ,  [b l ,  and [ c l  are obtained from ( C 1 2 ) ,  ( C 1 3 ) ,  or ((214) depending on 
h 

gn 

Similar ly, 
(c20) 

where [a], [bl  , and [c l  are obtained from t h e  equations corresponding to ( C 1 2 ) ,  
( C 1 3 ) ,  and (C14), respect ively,  f o r  a w e l l  region. 

By choosing the  forms i n  equations (45)  and (46) as has been done, a l l  of  
the  A ' s  and B's w i l l  be r e a l  (and thus a l s o  the  a ' s  and P I S ) .  Then 
equations ( C 1 9 )  and (C20) may be wr i t ten  

n n 

Now and F: can be wr i t ten  i n  fill: 
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sinh 4h@ 

+ (cosh 4hGg - l.)(a;@) 

+ (l- cos 4hG;)(a$3:) 

-

+ (cosh 4wG: 

03(a$ + (2w)(P;)2 +3 

+ (1 - cos 4wG~)(a$3;) 

-
This completes the normalization. All of the quant i t ies  needed i n  equa

t ions  (C8) a r e  given by equations (CZl), (C22), and ( C 9 ) .  If they be subst i 
tu ted  i n  the r i g h t  s ide  of (C8) and the square root  of the r e s u l t  taken, then 
the value of B8 s o  obtained w i l l  cause equation ( C l )  t o  be s a t i s f i e d .  

It should be noted that the r e s u l t s  hold both f o r  even and odd eigen
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functions,  the  only differences between these cases being tha t ,  f irst ,  a coef
f i c i e n t  other  than BB w i l l  have t o  be chosen as a r b i t r a r y  ( s ince  Az(x ' )  w i l l  
be of the  form A; s i n  GXx'/GX), which w i l l  make .qtake the  form 

s i n  2wGE 

Secondly, the  r e s u l t i n g  a ' s  and p ' s  w i l l  be d i f fe ren t  f o r  odd A(x ' ) .  
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APPENDIX D 

FORTRAN I V  PROGRAM FOR COMPUTATIONS OF EIGENVALUES 

General Description 

This program wr i t ten  i n  Fortran I V  language (ac tua l ly  a converted For
t r a n  I1 program) was used t o  compute t h e  eigenvalues shown i n  f igures  3 and 4. 
It i s  arranged t o  operate with t h e  Lewis  Research Center 7094 monitor system. 
It consis ts  of a main rout ine and four subroutines. The main routine and the  
first subroutine a r e  a l s o  used i n  the  program t o  compute t h e  wave functions. 

Before l i s t i n g  the individual rout ines ,  it w i l l  be useful  t o  note the  
following: 

By using equation (56 ) ,  nSB may be wr i t ten  

s o  t h a t  

A s  indicated i n  t h e  sect ion RESULTS A.ND DISCUSSION, the  computations have 
been carr ied out t o  values 50-percent greater  than ( VM ) SB' Thus, the computa
t i o n s  a r e  car r ied  out t o  a value of H large enough t o  make VM(x')=3(VM)sB/2 
or 


from which a maximum value of VA was chosen. Thus, 

Normally, t h i s  quant i ty  was computed by t h e  f irst  subroutine VOPFIX f o r  
each value of Vo, and then computations were made f o r  various multiples of 
(l/8)th ?f t h i s  value. For some purposes, computations were desired f o r  a 
f ixed (Vo)mx for severa l  values of Vo (see f i g .  4 ) .  This procedure w a s  then 
not su i tab le ,  and (VA)max w a s  read i n t o  MAIN and remained unchanged f o r  a l l  Of 

the  values of V o  set  by MAIN. 
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A l is t  of t h e  rout ines  and a short  descr ipt ion of t h e i r  primary functions 
follows . 

MAIN determines what is  t o  be COInFUted (eigenvalues or wave functions) and 
s t o r e s  the values of t h e  parameters t o  be used by t h e  subroutines i n  computing 
the  eigenvalues. 

Subroutine.VOPFIX f i x e s  t h e  value of V M ( x l )  t o  be used i n  the  computa
t i o n s .  

Subroutine EVFIND s e t s  limits on search f o r  eigenvalues, s t o r e s  the  eigen
values found by other  subroutines, and p r i n t s  and/or punches t h e  eigenvalues on 
sheets and/or cards. 

Subroutine ZERO loca tes  changes i n  s ign of t h e  determinant % as t r i a l  
values f o r  E are stepped, t e s t s  it f o r  closeness t o  zero, and returns  values 
of % and roots  found t o  EVFIND. 

Subroutine CALC computes value of DN for t r i a l  values of E given t o  it 
by ZERO and re turns  value of DN t o  ZERO. 

Detai ls  of Individual Routines 

MAIN provides needed f l e x i b i l i t y  i n  t h e  computations. Desired values of 
N, w, h, a, and Vo as wel l  as the  number of d i f f e r e n t  values of Vo i n  a 
given run a r e  f ixed first.  Then t h e  following options a r e  decided: 

VPSLCT determines whether the  value of V,(x') w i l l  be computed by VOPFIX 
or set i n  MAIN. 

EVSKIP determines whether eigenvalues or wave functions w i l l  be computed. 

EVODD determines whether even or odd solut ions a r e  t o  be used i n  t h e  com
putations.  If it i s  decided t o  compute eigenvalues, then DWRITE determines 
whether or not each computed value of DN w i l l  be pr inted out along with the  
t r i a l  value of E. 

Next, various quant i t ies  a r e  read i n  t h a t  determine t h e  s t a r t i n g  t r i a l  
value t o  be used f o r  E, t h e  amount by which subsequent t r i a l  values a re  t o  be 
stepped, and t h e  quant i t ies  t o  be used t o  determine whether the  computed value 
of % is  close enough t o  zero t o  permit t h e  corresponding t r i a l  value of E 
t o  be accepted as an eigenvalue. Control is then t ransfer red  t o  a DO-loop t h a t  
s e t s  values of Vo a f t e r  which the  program i s  terminated. That portion of 
MAIN used t o  compute t h e  wave'functions w i l l  be described i n  appendix E. 

Subroutine VOPFIX, l i k e  MAIN, is  used i n  computing wave functions as w e l l  
as eigenvalues. primarily, it sets spec i f ic  values f o r  v:. Secondarily, it 
computes t h e  corresponding values f o r  H i n  kG as w e l l  as t h e  number of the  
atoms i n  t h e  chain a t  which weak breakdown and s t rong breakdown occur. If 
EVSKIP was not equal t o  2 i n  MAIN, then  VOPFIX w i l l  c a l l  EVFIND. 
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It should be noted that a dummy subroutine NORMAL must be included i n  t h e  
deck when computing,eigenvalues or t h e  program w i l l  not run. 

Subroutine EVFIND s e t s  the  s t a r t i n g  value of E a t  which t h e  search f o r  
eigenvalues i s  t o  begin and t h e  maximum value f o r  E a t  which t h e  search i s  t o  
terminate. When an E and i t s  corresponding DN value are received, both are 
stored, a new s t a r t i n g  value is  chosen t o  be given t o  ZERO, and the  process i s  
continued u n t i l  a l l  t h e  eigenvalues i n  the  desired range have been found. A l l  
of t h e  eigenvalues and the  corresponding values of DN are then printed. 
Those eigenvalues f o r  which t h e  D N ' s  are s u f f i c i e n t l y  close t o  zero are 
pr inted again separately.  These la t ter  eigenvalues are a l s o  punched out on 
IBM cards f o r  use as input data  i n  computing wave functions.  

Subroutine ZERO sends t h e  s t a r t i n g  value of E obtained from EVFIND t o  
CALC, which sends back the  corresponding value of DN. The value of E is  
then increased by an amount s e t  i n  MAIN and cal led STEP. This new value of E 
i s  again sent t o  CALC, which again sends back the  corresponding DN. The en
t i r e  process is  continued u n t i l  t h e  s ign of the DN t h a t  is  sent back t o  ZERO 
changes from the  s ign of t h e  last DN sent.  A t  t h i s  point ,  a l i n e a r  interpo
l a t i o n  procedure begins and continues u n t i l  lDNl i s  s m a l l e r  than an amount 
s e t  i n  MAIN and ca l led  DTEST or u n t i l  the  amount by which the  l i n e a r  interpola
t i o n  changes E i s  smaller than another quantity s e t  i n  MAIN ca l led  PRECSN. 
When e i t h e r  of these two events occurs, t h e  last values of E and DN a r e  re 
turned t o  EVFIND along w i t h  an indicat ion (by means of sense l i g h t s )  of which 
of t h e  two events characterizes t h e  par t icu lar  p a i r  of values of E and DN. 

Each t r i a l  value of E along w i t h  the  corresponding value of DN will be 
pr inted or not i n  accordance w i t h  t h e  value of DWRITE that was set  i n  MAIN. 

Subroutine CALC u t i l i z e s  t h e  procedure indicated i n  appendix A t o  compute 
the  value of DN when a l l  of the  parameters are fixed. Both even and odd so
lu t ions  can be used i n  t h i s  subroutine. 

Input D a t a  

Units for t h e  input data  are the  following: energy, e lec t ron  vol t s ;  
length, angstroms; magnetic f i e l d  s t rength,  kilogauss. 

The data  a r e  input from tape 5. The names of t h e  quant i t ies  f o r  which the 
data  are used together with a descr ipt ion of the a c t u a l  use a r e  now l i s t e d .  
The subroutines i n  which these quant i t ies  a r e  used follow each description. 

N number of atoms i n  pos i t ive  half  of chain (MAIN, VOPFIX, EVFIND, CALC) 

W width of well  port ion i n  one period of Vp(x') (MAIN, CALC) 

H width of h i l l  portion i n  one period of V,(x') (MAIN,  CALC) 

A distance of atomic separation (MAIN, VOPFIX, CALC) 

KI beginning value of cycle of values of Vo s e t  i n  MAIN 
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K F  


K S  


VPSLCT 


VPCHS 


KIP 


K??P 


KSP 


EVSKIP 


EVODD 


DWRITE 


XSTART 


STFlP 

PRFCSN 

DTEST 

XTEST 

l a r g e s t  value i n  cycle of values of Vo 

s t e p  i n  values of cycle of values of Vo 

1, has MAIN f i x  VA; 2, has VOPFIX f i x  V i  (MAIN,  VOPFIX) 

value of VA given t o  MAIN ( t h i s  card omitted if VPSLCT i s  2 )  (MAIN,  
VOPFIX)  

beginning value of multiple of f r a c t i o n a l  value of ( V ' )  used i n  
VOPFIX to s e t  values of VA (MAIN, V O P F ~ )  0 max 

f i n a l  value of preceding descr ipt ion 

s t e p  i n  value of preceding descr ipt ion 

1, does not compute eigenvalues; 2, does compute eigenvalues ( M A I N ,
vom1x) 

1, computes even eigenvalues; 2, computes odd eigenvalues (MAIN,  CALC) 

1, values of DN pr inted i n  ZERO; 2, values of DN not pr inted i n  
ZERO 

beginning t r ia l  value of E i n  a s e t  of computations seeking zero 
value of DN (MAIN,  EVFIND, ZERO) 

value by which each successive t r i a l  value of E i s  stepped i n  pro
cess described previously (MAIN, EVFIND, ZERO) 

minimum i n t e r v a l  of change from one t r i a l  value of E t o  another in
te rpola ted  one t h a t  allows in te rpola t ion  procedure t o  proceed (M.AIN, 
zJ3Ro) 

maximum absolute value of DN t h a t  permits the  eigenvalue t o  be used 
i n  computing wave functions (MAIN, ZERO) 

minimum i n t e r v a l  of change from one t r ia l  value of E to another in
terpolated one t h a t  allows ZERO t o  keep searching; i f  change i s  
smaller than t h i s  and DN is  l e s s  than DTEST, t r i a l  value i s  s u i t 
able  f o r  use i n  computing m v e  function; if  DN i s  still l a rger  
than DTEST, search stops but the  last  t r i a l  value of E i s  unsuit
able for use i n  wave function computations (MAIN, CALC) 

A l i s t i n g  of t h e  subroutines used i n  computing the eigenvalues follows. 
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S I B F T C  M A I k  DECK 
OIYENSICh J O O ( 1 0 0 )  
OCUBLE PRECISICN X S T A R T . S T E P , X M A X , P R E C S N , D ~ E ~ T , ~ ~ E ~ ~  
OCUBLE P R E C I S I C N  WIH~AIVOIVPCHS 
I N T E G E R  X O S I Z E I E V S K I P , C W R I T E I E V O D D , V P S L C T  
COPPON CCN 
E Q U I V A L E h C E  ( A ~ C O M ( 1 ) ) ~ l W ~ C O M ( 3 ) ) ~ ( H , C O M ( 5 ) ) 1 ( V O I C O M l 7 ~ ~ ~  

1 l N ~ C C M l 1 6 ~ ~ ~ l X S T A R T . E S T A R T I C O M ~ l l ~ ~ r ( V P S L C ~ ~ C O M l 3 3 0 ~ ~ ~  
2 l O W R I T E ~ C O C 1 7 9 6 ~ ~ ~ l K I P ~ C O M ~ l 3 ~ ~ ~ ~ K F P ~ C O M ~ l 4 ~ J ~ ~ K S P ~ C O M I l 5 ~ ~ ~  

3 ~ N I ~ C O C ~ 1 7 ~ ~ r l N F ~ C O N l l B ~ ~ ~ l N S ~ C O M ~ l 9 ~ ~ ~ ~ E V O O O ~ C O M ~ ~ 2 9 ~ ~ ~  

4 ~ E V S K I P ~ C O C ~ 2 2 3 ~ ~ t ~ J E V I C O M ( 2 2 4 ~ ~ ~ ~ J O O ~ C O M ~ 2 2 5 ~ ~ ~ l K P L O T ~ C O M l 5 7 4 ~ ~ t  
5 ~ S T E P ~ C O M 1 7 9 7 ~ ~ ~ l P R E C S ~ , C O M l 7 9 9 ) ~ ~ ~ X M A X ~ E M A X ~ C O M l 8 ~ 1 ~ ~ ,  
6 ( C T E S T t C O M ( 8 0 3 ) ) ~ ( V P C H S 1 C O M ( 3 3 l ) ) r ( X D S I Z E t C ~ M l 8 0 7 ~ ~ ~  
7 ~ X T E S T ~ C O M l E 1 1 ~ ~ ~ I L T M ~ C O M l 8 l 4 ~ ~ 1 ( L T N . C O M ~ B l 5 ~ ~ ~ ~ K N ~ C O M ~ 8 l 6 ~ l ~  
8 I K S X t C C M l 8 1 7 ~ ~ ~ l K S Y ~ C O M ~ 8 l 8 ~ ~ . ( F X I C O M ( 8 l 9 ~ ~ ~ ~ O X t C O ~ ~ B 2 0 ~ ~ ~  
9 ( F Y  ,COP182  1 )  1 .  ( O Y  .COM( 822 1 )  

1 REAO 1 5 , 7 1 ) N  
7 1  F O R W A T ( 1 4 1  

REAO ( 5 ~ 7 2 ) W v H v A  
72 F O R M A T ( 3 0 1 C . 3 )  

R E A C  1 5 , 7 5 ) K I t K F t K S  
75 F O R t 4 A T I 3 1 4 )  

C V P S L C T  = 1.2 H A S  M A I N . V O P F I X  CHOOSE VOP 
R E A O  1 5 . 7 1 )  V P S L C T  
I F  (VPSLCT.EQ.2) GO TO 6 
REAO 1 5 . 7 8 )  VPCHS 

7 8  FORCAT (C15.8) 
6 REAO I ~ ~ ~ ~ ) K I P ~ K F P I K S P

C E V S K I P  = 1.2 MEANS WAVE FUNCTION.EV CALCULATED,  R E S P E C T I V E L Y  
R E A O ( 5 t 7 4 ) E V S K I P . J E V  

74 F C R C A T ( 2 1 4 )  
REAO ( 5 ~ 7 1 )EVCOD 

C EVCCO = l r 2  G I V E S  EVEN.CC0 S O L U T I O N S r R E S P E C T I V E L ~  
W R I T E  1 6 , 6 2 1  l N ~ W t h ~ A ~ K I ~ K F 1 K S ~ K I P I K F P I K S P I E V O D D I E V O D O ~ E V S K I P ~  

6 2  F O R M A T ( 1 H K 1 1 O X 1 2 H N = I 2 , 2 X , Z h W = F 4 . 2 ~ Z X , 2 H H = F ~ . Z , 2 X , 2 H A = F 4 . 2 , 2 X ,  
19HKI ,KF IKS=313 .14HI  K I P , K F P I K S P = 3 1 3 r E H I  EVODO=12,9H.  E V S K I P = I 2 )  

I F  (EVSKIP .EQ.1 )  GO T C  4 
REAO ( 5 . 7 1 ) C W R I T E  

C D W R I T E  -1 C R I T E S  D N  
R E A C  1 5 s 7 3 ) X S T A R T s S T E P  

73 F O R C A T l Z C 1 1 . 4 )  
REAO 1 5 , 7 7 ) P R E C S N t C T E S T  ,XTEST 

7 7  F O R P A T ( 3 0 1 1 . 4 )  
W R I T E l 6 , 6 3 )  ( O W R I T E I X S T A R T , S T E P ~ P R E C S N , O T E S T X T E S T )  

63 F O R M A T ~ 1 h K ~ 1 O X t 7 H O W R I T E ~ I 2 ~ 2 X t l 2 H X S T A R T ~ S T E P ~ 2 0 1 2 ~ 4 ~  
1 2 X ~ 1 9 H P R E C S N ~ O T E S T , X T E S T = 3 C l 2 . 4 )  

GO TO 5 
4 REAO ( 5 1 7 5 ) N I , N F 1 N S  

READ ( 5 9 7 6 ) J O C  
76  FORMAT I 7 0  I I /  301  1 )

C K P L O T  = 1.2 P E A N S  P L C T  PAOE, S K I P P E D  , R E S P E C T I V E L Y  
REAO ( 5 . 7 1 )  K P L O T  
I F  IKPLOT.EQ.2) GO TO 5 

C NO CF P O I N T S  I S  = T O  THE V P L U E  OF X O S I Z E  
REAO (5.71) X O S I Z E  

C L T P  S P E C I F I E S  NUMRER L I N E  SPACES BETWEEN G R I D  L I N E S  
C L T N  S P E C I F I E S  hUWBER O F  P R I N T  SPACES BETWEEN G R I O  L I N E S  
C K N  IS THE hUM8ER OF CURVES 
C E X P ( K S X 1 K S Y  -6 )  T I P E S  F X p F Y  OR T I M E S  OXIOY = A C T U A L  S T A R T I N G  V A L U E S  
C OR CHANGES I N  G R I O  V A L U E S  

REAO 15,511 LTP,LTN.KNIKSXIKSY 
5 1  FORMAT 1 5 1 4 1  

C F X  USEO TO S P E C I F Y  S T A R T I N G  V A L U E  OF V E R T I C A L  S C A L E  
C O X  USEE T O  S P E C l F Y  CHANGE I N  V F R T l C A L  G R I O  V A L U E S  E A C H  L I N E  SPACE 
C F Y  USED TO S P E C I F Y  S T A R T I N G  V A L U E  OF H O R I Z O N T A L  S C A L E  
C D Y  USEO T O  S P E C I F Y  CHANGE I N  H O R I Z O N T A L  G K I O  V A L U E S  E A C H  P R I N T  SPACE 

R E A D  1 5 , 5 2 1  F X t O X t F Y t O Y  
52  F O R P A T  1 4 F 8 . 3 )  

5 I F  1KI.EP.O) GC TO 11 
00 10 I= K I t K F t K S  

2 vo=1 
1 C  C A L L  V C P F I X  

G O  ro 12 
11 vc = 0 - O C O  

C A L L  V C P F I X  
12 S T C P  

E N 0  
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SUBROUTIh iE  V O P F I X  
C G I V E S  C P T I C N  OF NOT C A L C U L A T I N G  EV 

DOUBLE P R E C I S I C N  k d * H , A , V O ~ V O P , E V , V P C H S ~ X N , V P I N T ~ B V O P , C  
I N T E G E R  V P S L C T , E V S K I P  
CCCYON CCM 
E Q L I V A L E N C E  ~ A ~ C O M ~ 1 l l ~ ~ W ~ C O M l 3 ) l ~ ~ H ~ C O M ~ 5 ~ l ~ l V O ~ C O M l 7 l l ~  

1 l N ~ C O C ~ 1 6 ~ l ~ ~ V C P ~ C O M o ) . ( Y P S L C T ~ C O M ~ 3 3 O l l ~ l V P C H S ~ C O ~ ~ 3 3 l l l ~ 

2 ~ D k R I T E ~ C O C ~ 7 9 6 ~ ~ ~ ~ K I P ~ C O M ~ l 3 l l ~ l K F P I C O M ~ l 4 l l ~ ~ K S P ~ C O M ~ l 5 l l ~  

3 ~ E V S K I P ~ C C ~ ~ Z 2 3 l l ~ ~ J E V I C O M ~ 2 Z 4 l l  

I F  (K IP.GT.01 GO TO 1 
VOP = 0.00 
W R I T E  ( 6 , 6 3 1  

6 3  F O R Y A T  ( 1 l - K ~ 5 X ~ 6 H V O P = 0 ~ 3 X , 5 H H M = O ~ 3 X ~ 2 l H N OM A G N E T I C  BREAKGOWN/LHK) 
GO TO 1 1 6 1 1 7 )  r E V S K l P  

16 	DO 18 J2 = l , J E V  
R E A 0  1 5 . 7 1 1  EV 
C A L L  N C R P A L I E V I  

1 8  C O h i T I N L E  
GO TO 15 

1 7  C A L L  E V F I N C  
GO TO 15 

1 X N = N  
V P I N T  = K F P  

BVCP = V C ~ C S Q R T ~ 1 . 5 0 0 1 / 1 2 . 0 D O ~ X N ~ V P I N T I  


2 	 CH = a . 7 9 3 9 w ~ - i z  
00 14 J=  KIP,KFP.KSP 
C = J  
GO TO ( 1 9 v 3 1 r V P S L C T  

1 9  VOP = VPCHS 
GC TO 2 0  

3 V C P  = c r e v c p  
2 0  HM= S Q H T ( V C P / C b I / A  

9 h R I T E  ( ~ , ~ ~ I V O I V O P , H M  
62 F O R ~ A T ( 1 H K ~ 5 X ~ 3 H V O = F 5 ~ l ~ Z X ~ 4 H V O P ~ F 5 ~ 4 ~ l 6 X ~ 3 H H M ~ ~ l P E 9 ~ 3 ~ / l H ~ ~  

GO TO l l l r 1 3 1 ~ E V S K I P  
11 	J E V  = J E V  

DO 12 J l =  1 , J E V  
READ ( 5 . 7 1 l E V  

71  FORMAT (023.16 I 
C A L L  N C R Y A L ( E V 1  

1 2  C O h T I N U E  
GO TO 14 

1 3  C A L L  E V F I N C  
1 4  C O N T I N L E  
1 5  RETURN 

END 

54 



14 -- - -  

S U B R O U T I h E  E V F I N O  

OOUBLE P R E C I S I O N  E , C N , R O O T I X S T A R T I X M A X I P R E ~ S N I X B E G I N ~ R O O T ~  

OOUBLE P R E C I S I C N  E V ~ E V l , O E V . O E V l ~ W , H . A t V O I V O P t X r E S T  

O I P E N S I O N  E V l 1 0 0 l ~ E V 1 ~ 1 0 0 l ~ 0 E V l l O O ~ ~ O E V l ~ l O O ~  

CCFPON COM 

E Q U I V A L E N C E  l A ~ C O M l l ~ l ~ l W ~ C O M l 3 l l ~ l H ~ C O M l 5 ) l ~ l V O ~ C ~ M ~ 7 l ~ ~  


1 l N ~ C C M ~ 1 6 ~ l ~ l V C P ~ C O M l 3 Z 5 l l ~ l R O O T 1 C O M o ~ ~ l X S T A R T ~ E S T A R T ~ C O M ~ l l ~ l ~  
2 ~ N E V ~ C O M l 2 0 l l ~ l E V ~ C O M ~ 2 l l l ~ ~ E 1 X , C O M l 3 2 7 ~ ~ ~ ~ X T E S T ~ C O M l 8 l l l l ~  

3 l S T E P ~ C O Y l 7 9 7 ~ ~ ~ l P H E C S N ~ C O M ~ 7 9 9 ) ) r ( X M A X ~ E M A X ~ C O M l E O l l l ~  
4 l D T E S T ~ C O M ~ 8 0 3 l ~ ~ l D N ~ C C M ~ 8 O 5 l l ~ l X B E G I N ~ C O M ~ E O 9 ~ l  
00 6 J = l v l C O  
E V I J )  = 0. CO 
O E V I J I  = 0.000 
D E V l ( J )  = 0.000 

6 E V l ( J 1  = 0.00 
1 XN = N 

I F  1VO.EP.O.OOOI GO T O  25 
2 	 BEWAX= X k + V O * S C R T ( 1 . 5 1 / 2 . 0  

I F  ( B E C A X - V O I  3.3.4 
3 ENAX = VC + 0.5 

GO TO 5 
4 EMAX = BEMAX + 0.5 

GO TO 5 
2 5  XRAX = 2 5 . 0 0 0  

5 X B E G I N  = XSTART 
NEV = 0 
00 15 J= 1,100 

7 C A L L  ZERO 
C SENSE L I G H T  1 E N  I F  NO ROOT FOUND FOR X .GE. EMAX 

C A L L  S L I T E T l 1 ~ K O O O F X l  
GC T O ( 8 . 9 1  .KOOOFX 

8 NEV = h E V  + 1  
E V I N E V I  = C .  00 
O E V  ( N E V I  = 0.000 

E Y l I J l  = 0.000 

D E V l I J )  = 0.000 

I ,? T O  16 


9 L. (J.GT.11 GO TO 1 1  
IC E V l I J l  = RCOT 

O E V l ( J )  = CN 
C S L I T E  3 ON I F  RCOT CANNOT PASS ON T E S T  

C A L L  S L I T E T ( 3 . K )  
GO TO ( 1 9 r l B l . K  

C NEV = NUMBER OF E V S  W H I C H  ARE CN T E S T E 0  
1 8  NEV = h E V  + 1  

E V ( N E V )  = R C O T  
O E V I N E V I  = ON 

19 R O C T l  = ROCT 
G f l  Tfl  - .  

11 I F  I R O C T  .GE.EMAXl GO TO 16 
12  I F ( O A B S 1 R O C T  - ROOTl).GT. P R E C S N I  GO T O  10 

C A L L  S L I T E T ( 3 , K l  
GO TO ( 1 3 r 2 2 ) ~ K  

2 2  I F  (NEV.GT.0) GO TO 2 1  
NEV = AEV + 1 

2 1  E V ( N E V 1  = RCOT 
O E V I N E V I  = CN 

13  X B E G I N  = RCOT + S T E P  
GO TO 7 

14 X B E G I N  = RCCT 
1 5  CCNTINClE 

16 ClRITE 1 6 , 6 4 1  V0,VOP 

64 FORMAT ~ l H K ~ 1 0 X ~ 3 H V O ~ F 4 ~ l r 4 X 1 4 H V O P = F B . 4 / 1 H K )  

W R I T E l 6 . 6 1 )  ( E V 1 1  I )  . O E V l l  I ) ,  I = l . J l  
!EX 2HON I / / ( 4030.16 I 161 FORMAT 1 5 0 X 1 9 H A L L  R O O T S / / ~ I ~ B X I ~ H E V I Z  

W R I T E  1 6 , 6 2 1  ( E V ( I ) r O E V ( I ) . I = l , N E V )  
62 FORMAT 1 3 0 X . 3 7 H E I G E N V A L U E S  H A V I N G  ON L E S S  THAN D T E S T / /  

1 2 ~ 2 8 X ~ 2 H E V ~ 2 B X ~ 2 H 0 N ~ / / l 4 0 3 0 ~ 1 6 1 1  
00 20 L = l . h E V  

2 0  Y R I T E  1 6 , 6 3 1  l E V l L l r O E V l L l ~ N ~ V O ~ V O P l  
3HVO=F4.1, 10X.4HVOP =F6.3163 F O R M A T I 1 H $ r O 2 3 ~ 1 6 ~ 0 1 2 . 3 ~ 2 X ~ 2 H N = I 2 . Z X 1  

RETURN 
END 
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SIBFTC ZERO L I S T I R E F ~ D E C K  

SUBROUTINE ZERO 

DOUBLE PRECISION X S T A R T ~ S T E P , X M A X ~ P R E C S N ~ O T E S T ~ X 8 E G I N ~ R U O T ~ O N  

OOUtlLE PKECISION X ~ X L , X Z , T ~ , T ~ , O A B S I E I X T E S T  

OOtJ8LE PRECISION W,H,A,VO,VOP 

INTEGER OWRIlE 

COMMON COM 
tQUIVALENCt ~ A ~ C O M ~ l ~ ~ t ~ W ~ C O M ~ 3 l ) r ( H l t O n ( S ~ ~ ~ l V O t C O M l 7 ~ ~ ~  

1 ~ N ~ C O M ~ 1 6 ~ 1 ~ l V O P t C U M l 3 2 5 ~ ) , ( R O O T t C O M ~ 9 ~ ~ ~ ~ X S T A R T ~ E S T A R T ~ C O M l l l ~ ~ t  
2 l S T E P ~ i O M l 7 9 7 l ~ ~ l P R ~ C S N ~ C O M ~ 7 9 9 ~ ~ ~ l X M A X ~ E M A X t C O M ~ E O l ~ l ~  

3 ~ X T E S T ~ C O M ~ 8 1 1 ~ ~ ~ l D T E S T ~ C O M l 8 O 3 l ~ ~ ~ D N ~ C O M l 8 O 5 ~ ~ ~  

4 ~ E 1 X 1 C O M 1 3 2 7 ~ ~ ~ ~ D W R I T E ~ C O M ~ 7 9 6 ~ ~ ~ 1 X B E G I N ~ C 0 M 1 E 0 9 ~ ~  

X = XBEGIN 
CALL CALC 
GO TO 1101t102)tDWKITE

101 WRITE (6.61) ttON 

61 FORMATI10X,ZlD28.16)) 


102 IF IDN) 1,213 

1 J = l  


G O  T O  4 
2 ROOT = X 

IF(DWRITE.EQ.2) G O  TO 15 
120 MHITE (6.631 ROOTtDN 
6 3  FORMAT(10X~21028.l6)~4HROOT) 

121 GO TO 15 
3 J = Z  
4 x1 = x 

T 1  = ON 

X = Xl+STEP 

CALL LALC 

IF(DWKIT�.EP.2) GO TO 104 


103 WRITEl6.61) �,ON 
1 04 IF (ON) 512.6 

5 GO TU (7,8)1J 
6 GO TO ( 8 ~ 7 ) t J  
7 IF (X-XMAX) 4.14914 
8 12  = ON 

x2 =x 
9 X = (DABS(T1)r X 2  + DABS1 12)+X1 I / (  DABS1 11 1 +DABS( 1 2 1  1 

IF(XZ-X.LE.PKECSN) G O  T O  16 
10 CALL CALC 


IFIOWRITE.EU.2) G O  TO 106 

WRITE16.61) E I O N  


106 IF ION) 1112912 

1 1  G O  TO (13,8),J 

12 G O  TO l 8 , 1 3 ) , J  
13 	x1 = x 

T 1  = UN 
X = (OABS(Tl)rX2 + O A B S ~ T 2 l ~ X l l / ~ O A B S ~ T l ~ + O A 8 S ~ T 2 ~ ~
IF (X-X1 -PKECSN) 1 7 , 1 7 ~ 1 0  

16 J Z = Z  
G O  TO 18 

1 7  J2=1 
18 CALL CALC 

IF(DABS(ON).GT.DTESTI GO TO 20 
19 Jl=l 

GO TO 21 
20 J 1=2 
21 GO TO l2,22)rJ1
2 2  GO TO ( 2 3 ~ 2 4 ) r J Z  
23 IF IX-X1-XTkST )25.25910 
24 IF(XZ-X-XTEST)25.25,10
25 R O O T  = X 

GO TO I107,108),UWRITE 
107 WRITE 16,621 � t D N  
62 FORMAT (10X12(028.16),12HON TOO LARGE) 
108 CALL SLITE ( 3 )  

GO TO 15 
1 4  CALL SLITE ( 1 )  
15 RETURN 

END 


56 



S U B U O b I l N E  L I L C  
I N I E G E R  t V C L C  
SUBROUTINE L I L C  
I N I E G E R  t V C L C  
UObBLE P R t C l S l O h  I~H.A.VU.VUP 
U U L B L E  P R t C l S l G N  U N ~ E ~ U A d S ~ U S Q R T . G O n , n G o n ~ R L O U . X I . X J ~ K N  
U O L B L E  P R ~ C I 5 I C N B C J H ~ ~ G l ~ ~ A M G J H , A M G l ~ , G J H , G l ~ , R G l ~ ~ R L J H ~ U B G J H  
O O U B L t  P R t C l S I L N  t X P P  I U E X P  , THGJH , E X P N  , C S H F  
O O L B L E  P R E C l S I U N  SNHF t C S F  , UCOS SNF , U S l H  
UOURLE P R t C I S l O N  R B G I ~ ~ X N ~ B L N H . I B G N H . G N H , t T A , C S , l Y G l ~ , l Y C N H  
CUPPCN con 

E Q b l V A L E N C E  ~ A ~ C O ~ l l l l ~ I ~ ~ C U M l 3 1 l , l H , C O ~ l 5 l l , l V U , C U M l 7 l l ~  


C S V M M O L S  S h h . S N a - B A R . ~ N H . ~ N H - 8 A R , R E S P E C l l V E L Y  
7 0 1  t I A  = 0 . 5 1 2 3 3 5 1 0 0  
702  GO* = E l A * O b C R T l E l  
703 mcom=a*cou 

GO TO 1 7 0 4 ~ 7 0 5 1 ~ E V O O O  
7 0 C  	R G O Y  = - O C U S l  *GOMI 

REGOW * G O u o L ; S I N l  UGOYI 
GO TC 2 0 0  

7 0 5  	RBGOh .: -UCO3lM6OLl 
I F  IhGOh . E * .  0.001 GU 
R G O Y  - - O S l N t M C O b d J / G O U  
GO Tc; 2 C O  

706  ucon = - *  
2 0 0  	00 300 l = l . h  

J.1-1 
X I = I  
X J  = J  

BGJH= E- XJm.2vVOP-VO 

B G I U  = t- I l .12.VOP 

A E G l h = O A M b I d G I k l  

I M G J l + = C A E S I e G J H I  

G J b  = E T A l C b L R T I I M G J H I 
-

TU 706 

G I h  t T A ~ U S C R T l I d C I n 1  
T m G I h  = Z . C O  e n.i.In 
T H G J H  = 2.CO .H* G J H  
I F l B G J H i  1.2 .3  

I 	 t X P P =  D E K P l T I - G J h l  
t X P N  = O t X P l - T H G J H I  
C S h F  = I E X P P I  E X P N l I 2 . 0 0  
S N b F  = I E X P P - E X P N 1 1 2 . 0 0  
R C J H  * - I H G i u * C S H F  t RMGIW.SNHF/GJHI  
RMGJH = - 1 H G I n . G J H ~ S N H F  tRMGIW.CSHF1 
LO TC 2 1 0  

2 K G J H  = - I R C I h t 2 . U O ~ H ~ R M G 1 ~ I  
R B G J H  *-RBGIY 
LO T O  2 1 0  

3 	 C S F  = C C O S I I I - G J H l  
5 N F  = C S I N I I F G J H I  
H G J H  - l R I . I Y * C S F  t R B G I Y * 5 N F / G J H I  
R B G J H  = R G l h r G J H * S N F  - H B G l U * C S F  

2 1 0  I F I E L I M I  2 0 1 . 2 0 2 p 2 0 3  
2 0 1  	E X P P =  C E X P l I h G l h l  

E Y P N  L UEXPl -TUGI .1  
C L h F  = I E N P P +  E X P N I I 2 . 0 0  
SNHF I E X P P - E X P N I 1 2 . 0 0  
R G I Y  = -1RCJH.CSHF + R B b J H * S N H F / G I W I  
HBCln = - l H G J h * G I U * S N H F  +RBGJH.CSHFI  
GO TC 300 

2 0 2  	R G l W  = - lRGJ~+2 .UO.Y .RBGJHI  
R B G l M  * - R d L J b  
L O  T C  300 

2 0 3  	C S F  = O C U S l T h G l h )  
5 N F  = C S l N l l h G I M )  
H G l Y  * - 1 R C J h w C S F  + RBGJHISNF/GIU I  
R M G I n  = RGJh  * L I * . S N t  -HBGJH.CSF 

300 	C O h T l N b t  
XN =N 
BGhH - E - X N r - 2 r V O Y - V O  
A B t i N H =  O A 1 1 5 l E G N h l  
G N b  = E l A * O b C R l l A M G N H l  
THGNH * 2.CO-li.LhH 
I F 1  B G N b I  3 0 1 , 3 0 2 1  3 0 3  

3 0 1  	E X P P =  L t X P l  T k G N H I  
E X P N  = O E X P I - T H L N H I  
C S h F  - I F X P P I  E X P N I I Z . 0 0  
SNHF = I t X P P - t X P N l I 2 . 0 0  

3 1 1  ON = - l U G l h r C b H F +  R t l G I U . b N H F / L N H I  
GO T C  6 C O  

3 0 2  U N - - I R L I U + Z . C O r ~ . H R G l Y l  
GO TL 600  

3 0 3  L 5 F  = C L I I ~ I I F L N C I  
SNF = C ~ I N I I I - G N C I  

3 1 3  ON = - I H G I ~ P C S F  R M G I n . i N F / L N H I  
600 U t T b R h  

F Nn 
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APPENDIX E 

FORTRAN I V  PROGRAM FOR COMPUTATIONS O F  WAVE FUNCTIONS 

General Description 

Like the  eigenvalue program, t h i s  program operates with t h e  Lewis 7094 
monitor system. It cons is t s  of t h e  same MAIN l i s t e d  i n  appendix D plus  e ight  
subroutines. The following i s  a descr ip t ion  of t h e  primary functions of t h e  
rout ines  : 

MAIN determines what i s  to be computed (eigenvalues or wave funct ions)  and 
s to re s  t h e  values of t he  parameters t o  be used by the  subroutines i n  computing 
the  wave functions.  

Subroutine VOPFIX f i x e s  t h e  value of VM(xr)t o  be used i n  the  computa
t i o n s  and feeds eigenvalues t o  subroutine NORMAL. 

Subroutine NORMAL computes and s to re s  r a t i o s  of coef f ic ien ts  of s in- and 
cos-like terms i n  each i n t e r v a l  ( the  An's and B n ' s  i n  eqs. (45)  to ( 4 7 ) )  t o  
t he  a r b i t r a r y  coef f ic ien t  i n  the  Oth well .  (These quant i t ies  a re  the  an's  
and Pn's of eqs. (C15) to ( C 1 8 ) . )  It a l so  normalizes the  wave funct ion by 
f inding the  value of t h e  BE: ( o r  A;) t h a t  w i l l  make 

LwlA(x ' ) I2  dx '  = 1 

i n  accordance with the  procedure i n  appendix C .  

Subroutine WFC computes the  normalized An's and B n ' s  and sends them t o  
other subroutines t o  be used i n  computing ac tua l  values of t h e  wave funct ion i n  
t h e  e n t i r e  range x '  = 0 t o  ( N  + 1)a - w. The other  subroutines r e tu rn  the  
wave function values t o  WFC, which p r i n t s  them a l l  out and determines whether 
or not a p lo t  should a l so  be made. 

Subroutine WFO computes values of A:(x'), Ag(x') ,  IAz(x')l 2, and 

IAE(x') 1 and re turns  these  values t o  WFC. 

2
Subroutine WFXIW computes values of AE(x') and IAx(x')l f o r  n > 0 

and re turns  these values t o  WFC. 

Subroutine WFXIH computes values of l A ~ ( x ' ) l  and lAE(x')12 f o r  n > 0 
(including n = N )  and re turns  these values t o  WFC. 

Subroutine PLOTFX s e t s  up PLOTMY. 

Subroutine PLOTMY furnishes  a p lo t  of A(x ' )  and lA(x ' )12 against  x ' .  
(This subroutine i s  p a r t  of t h e  l i b r a r y  tape of t h e  Lewis  Monitor System.) 
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Detai ls  of Individual Routines 

I n  t h e  following descr ipt ions only those p a r t s  of MAIN and VOPFIX per ta in
ing t o  computations of t h e  wave functions are included. 

I n  MAIN t h e  parameters N, w, h, a, and VO as w e l l  as t h e  choice of how 
V,(x') i s  t o  be made are f ed  i n  as described i n  appendix D. EVSKIP must be set  
equal t o  1 so t h a t  eigenvalues w i l l  not be computed. I n  addition, J E V  must be 
f ixed ,  which gives t h e  t o t a l  number of eigenvalue da ta  cards t o  be used i n  the  
run. 

Next; ,  t h e  number of subintervals i n  each region of constant po ten t i a l  i s  
f ixed.  Provision i s  made f o r  computing wave functions only i n  c e r t a i n  regions 
i f  desired.  Then a ' d e c i s i o n  i s  made as t o  whether a p l o t  i s  t o  be obtained i n  
addi t ion t o  t h e  pr inted values f o r  A(x'). If a p l o t  i s  asked for, various 
parameters needed by PLOTMY a r e  then read i n .  Control i s  then  t r ans fe r r ed  t o  
t h e  same DO-loop t h a t  sets Vo as described i n  appendix D a t  t he  end of which 
the  program i s  terminated. 

Subroutine VOPFIX w i l l  determine the  value of V M ( x l )  t o  be used i n  subse
quent subroutines as described i n  appendix D. However, if  EVSKIP w a s  set  equal 
t o  1 i n  MAIN, then instead of, c a l l i n g  EVFIND, cont ro l  w i l l  be t r ans fe r r ed  t o  an 
i n t e r v a l  DO-loop t h a t  w i l l  read eigenvalues s tored  i n  M A I N  one a t  a time and 
c a l l  NORMAL. When t h i s  procedure has been followed J E V  times (see M A I N ) ,  t he  
value of VM(x') i n  t he  ex te rna l  DO-loop i s  stepped up and t h e  inner DO-loop 
cycle repeated. When the  outer DO-loop i s  completed, con t ro l  i s  returned t o  
MAIN. 


It should be noted t h a t  a dummy subroutine EVFIND must be included i n  t h e  
deck when computing wave functions or t h e  program w i l l  not run. 

Subroutine NORMAL computes A z / B z ,  Bx/Bw, AE/Bz ,  and BE/Bz ( see  eqs. 
(C13) t o  (C18)) from t h e  matching equations ?A&), (A5), (A7), (A8), ( A s ) ,  

( A l O ) ,  and ( A l l ) .  A s  explained i n  the  tex t ,  i f  DN i s  s m a l l  enough for the  

eigenvalue being used, t he  r e s u l t s  w i l l  be the  same as i f  equation (A12) had 

been used instead of equation ( A l l ) .  The rout ine  i s  set  up i n  such a manner 

t h a t  individual  quan t i t i e s  needed f o r  t h e  normalization as given by equations 

(CZl), ( C Z Z ) ,  ( C 2 3 ) ,  (C24), and ( C 9 )  are computed and s tored  along with each 

r a t i o .  After a l l  of t h e  r a t i o s  have been computed and s tored  and t h e  normaliz

a t i o n  of t he  a r b i t r a r y  coe f f i c i en t  has been completed, WFC i s  ca l l ed .  


Subroutine WFC normalizes and s to re s  t h e  unnormalized coe f f i c i en t s  com
puted i n  N O W .  Then A:, B:, and Gg are computed and WFO i s  ca l led .  N e x t ,  
a DO-loop i s  entered i n  which the following procedure i s  ca r r i ed  out :  

F i r s t ,  a t e s t  i s  made t o  determine whether A(x ' )  was desired f o r  t he  re
gion being considered. If t h e  da ta  i n  MAIN indicated t h a t  no A(x') w a s  asked 
f o r  t h e  region i n  question, then t h e  same t e s t  i s  made f o r  t h e  next region one 
atomic dis tance f a r t h e r  along t h e  pos i t i ve .ha l f  of t h e  chain. If t h e  t e s t  in 
d i ca t e s  t h a t  A(x') w a s  asked f o r  i n  t h e  region, then AT, BE, and BT are 
set  up and W F X I W  is called t o  compute A(x') i n  the w e l l  por t ion of t he  region. 
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When W F X I W  re turns  con t ro l  t o  W E ,  %, Bk, and G$ a r e  s e t  up and WFXIH i s  
ca l l ed  t o  compute A(x ' )  i n  t h e  h i l l  prot ion of t he  region. Following t h i s ,  
t he  t e s t  i s  applied t o  the  next region. 

After a l l  of t h e  regions i n  the  chain have been t e s t e d  and values of 
A(x') computed f o r  a l l  of t h e  region for which these  values a re  requested,  t he  
values a re  pr in ted  out.  

Then if a p l o t  i s  desired (KF'LOT = 1), PLOTFX i s  cal led.  If no p lo t  is  
desired,  control  i s  re turned t o  NORMAL. 

The spec ia l  subroutine WFO w a s  wr i t t en  t o  compute A;( x') and Ab(,' ) be
cause the  beginning and end of the  cycle have somewhat spec ia l  behavior. 
These quant i t ies  and t h e i r  absolute  squares a r e  computed by using equa
t ions  ( 2 4 )  and ( 2 5 ) .  Control i s  then returned t o  W E .  

Subroutine WFXIW computes the  quant i t ies  AE(x') and I A;(x') I 2 ( f o r  
0 < n 2 N )  using equation ( 3 8 ) .  Control i s  returned t o  WFC. 

Subroutine WFXIH computes t h e  quant i t ies  A;(x') and ]Ah,(x')I f o r  
0 < n < N by using equation ( 3 9 ) .  When a t e s t  ind ica tes  t h a t  n = N ,  then 
A@(x') and IAg(x')I a r e  computed by using equation (40) .  After each s e t  of 
computations cont ro l  i s  returned t o  WC. 

Subroutine PLOTFX(EV) arranges the  values of x ' ,  An(x ' ) ,  and IAn(x')l 2 
i n  arrays so t h a t  they can be p lo t ted  properly by PLOW. A l l  of t he  input 
cont ro l  data  for t h i s  subroutine i s  read i n  by MAIN. The eigenvalue i s  an 
argument of t h i s  subroutine and i s  read i n  by VOPFIX. Actually, t he  eigenvalue 
i s  only required f o r  t he  legend of t he  p lo t .  

Subroutine PLOTMY i s  pa r t  of t he  l i b r a r y  tape of t he  Lewis monitoring sys
tem. It i s  the  rout ine t h a t  ac tua l ly  p l o t s  A(x')  and IA(x')l2 against  x'. 
The main fea ture  of t h i s  rout ine t h a t  must be taken in to  account i s  t h a t  it 
places the  ordinate across t h e  top  of the  page with zero t o  the  l e f t  and t h e  
abscissa  down the  page with the  lowest value a t  the  top. While t h i s  fea ture  i s  
somewhat inconvenient i n  many cases, it has t h e  advantage of permitt ing t h e  
case of an abscissa  of a r b i t r a r y  length since severa l  pages can be covered con
tinuously.  I ts  use i s  f u l l y  described i n  reference 16. 

Input Data 

Units fo r  the  input data  a r e  the  following: energy, e lec t ron  vo l t s ;  
length,  angstroms. 

The data  a r e  input from tape 5. The names of t he  quant i t ies  f o r  which the  
data  a re  used along with a descr ipt ion of t h e  quant i ty  a re  now l i s t e d .  The 
subroutines i n  which these quant i t ies  a r e  used follow each descr ipt ion.  

N number of  stoms i n  pos i t ive  half  of chain (MAIN, VOPFIX, NORMAL, WFC, 
WFXIH, PLOTFX) 

6 0  



W 


H 


A 


K I  

KF 


KS 

VPSLCT 

VPCHS 


K I P  

KFP 

K S P  

I V S K I P  

EVODD 


N I  

NF 


NS 

J D O  

KPLOT 


XDSIZE 

LTM 

LTN 

m 

width of well  port ion i n  one period of V p ( x ' )  (MAIN, NORMAL, WFO, 
WFXIW) 

width of h i l l  port ion i n  one period of V p ( x ' )  (MAIN, N O W ,  WFO, 
"1 

distance of atomic separation (MAIN, VOPFIX, NORMAL, WFXIW, WFXIH) 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

see appendix D 

beginning multiple of f r a c t i o n  of subdivision of individual region 
used f o r  computing wave functions 

1/NF, f r a c t i o n  of subdivision of individual region; NF, f i n a l  multiple 
of t h i s  subdivision 

stepping i n t e r v a l  of multiple of subdivision 

dimensional quant i ty  by means of which the decision t o  compute A(x ' )
f o r  a region i s  made; each region i n  sequence i s  characterized by 
the  locat ion of t h e  number on t h e  data card - the  f irst  number on 
the  card corresponds t o  the  0th region; if  the j t h  column on the  
data  card i s  blank, no computation of Aj (x ' )  w i l l  be made; i f  the  
jth column contains a 1, the  computation i s  m a d e  (MAIN, WFC) 

1, plo t  of A(x ' )  w i l l  be made; 2, no p l o t  of A(x')  w i l l  be made 

number of points  on one curve i n  p l o t  

number of l i n e  spaces between gr id  l i n e s  on p l o t  

number of p r i n t  spaces between grid l i n e s  on p lo t  

number of curves on p l o t  
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KSX sca l ing  parameter f o r  x-scale (runs up and down the  page); FX and DX w i l l  
be mult ipl ied by 10KSX-6 

Fx quanti’-. used to spec i fy  s t a r t i n g  value on v e r t i c a l  scale;  ac tua l  start
ing value, FX times 10KsX-6 

DX quant i ty  used t o  specify change i n  value i n  v e r t i c a l  scale  one l i n e  
space; a c t u a l  change, DX times 10KSX-6 

KSY sca l ing  parameter f o r  y-scale (runs across  page); FY and DY w i l l  be mul
t i p l i e d  by 1$sy-6 

FY quant i ty  used t o  specify s t a r t i n g  value on horizontal  scale;  a c t u a l  
s t a r t i n g  value, FY times 1oKSY-6 

DY quant i ty  used t o  spec i fy  change i n  hor izonta l  sca le  i n  one p r i n t  space; 
ac tua l  change, DY times eKSY-6 

A l i s t i n g  of t he  subroutines used i n  computing the  wave function follows 
(MAIN and VOPFIX are l i s t e d  i n  appendix D ) .  
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b U B R O U T I N E  Y U K M A L I E V )  
C F U L L  OOUOLE PRECSN. ONLY STORES FOR 50 ATOMS NOM. 

U I M E N S I O N  A K ~ 1 5 0 ~ ~ B K W ~ 5 0 1 ~ A K H ~ 5 0 1 ~ U K H ~ 5 0 1 ~  
1 G K d ~ 5 0 ~ ~ 6 K H ~ 5 O ~ ~ J M 1 5 0 1 ~ J H ~ 5 0 ~ ~ R M L Z ~ 1 0 5 ~  

OUUULE P R E C I j I O N  W , H , V O t V O P , B O W ~ G I W t G J H ~ A K M r B K W t 4 K t i ~ ~ K H ~ C K U I t G K H  
U U U d L E  P K E C I S I O N  O A ~ S I O S Q R T ~ E V I E X ~ ~ G J H ~ A B G J H ~ ~ G I W ~ A ~ G I W ~ X I ~ K ~ L  
IJOUULE P K E C I L I O N  SIJF . O S I N  s T W G I r l  k X P P  e D t X P  
OOUHLE P K E C I b I O N  F H G J H  t E X P N  t SNHF t CNHF t CNF 
OOIJt3Lt P R � C I S I O N  ULOS t NGIW I E X P P J H  t T H G J H  t E X P N J H  
J O U U L t  P R E C I S I O N  SIUHFJH t C N H F J H  t E X P P I W  9 FWGIW t E X P N I d  
UUUI;(LE P R E C I b I O I \ I  Ss’4HFIW t CNHFIW t S N F J H  C N F J H  t S N F I M  
JOULILE P R E C I b I O N  CaUFI W v K M L Z t  E T A  
3 0 U U L E  P R E C I S I O N  A A N M O H ~ ~ ~ B N M O H I A U N M O H ~ A A N M I W ~ A B N M I M  
u O d i I L E  P R E C I L I O N  AANMJH,BBNMJHvABNMJH 
I N 1  �LEK EVODL) 
LUMMON LOM 
t W U I V A L E N C t  ( A r C U M l  1 1  1 r (  W i C O M ( 3 ) l ~ l H t C 3 M l 5 )1 t ( V C l r C O M l 7 ) )  9 

1 l V U P ~ C U M l 3 2 5 1 ~ ~ ~ H O W ~ C O M l 9 5 O 3 l l ~ l A K W ~ C O M ~ 9 5 O 5 ~ ~ ~ ~ B K M ~ ~ O M ~ ~ 6 O 5 l ~ ~  
2 ~ A K H ~ C I J M l 9 7 0 5 1 l t l U K n l C O M ( 9 R O 5 l l ~ l G K W t C ~ M ~ Y 9 O 5 l ~ t l G K H t C ~ M l l O O O 5 ~ ~ ~  

3 ~ N ~ C U M 1 1 6 ~ ~ ~ l J H ~ C O M ~ l O l O 5 ~ ~ ~ ~ J U I ~ C O M l l O 2 O 5 l ~ t ~ E V O ~ O t C ~ M l 3 ~ 9 ~ ~  

1 	 t X  = EV 
t T A  = 0.512335100 
A K W I I )  = 0.OuO 
t 3 K I J ( l )  = O.OU0 
6 1 4  = E T A * U S Q R T ( E X )  
G K d l l )  = GIW 
rtilrl = W*GIM 
T N G I d  = 2.DOcWGIW 
H G J H  = EX-VU 
A l l G J H  = O A U S I B G J H )  
G J r i  = t T A * U S u H T ( A B G J H )  
tiKt-11 1 )  = t i J H  
T H b J H  = L .DO*H* t iJH 
F H G J H  = 4.UO*H*GJH 
J d l l )  = 3 

L C U M P U I E  C O E t F I C I � i N T  OF t3OW UR AOW I N  RMLZ 
SINF = O S I N I T W G I W )~~~ . ~~ 

TERM I N  N O R M A L I Z A T I O N  I N V O L V I N G  t3OW O R  A O W  
GO TU ( 1 0 1 ~ 1 0 2 1 r � V O U D  

101 R k L Z l l )  = W * ( l . D O + S N F / T W G I W 1 / 2 . 0 0  
COMPUTE HOH/BOW 

O K H ( 1 )  = D C O b l W G I W )  
G O  r u  i o 3  

1 0 2  IKMLL ( 1 )  = W * I l . U O  - S N F / T W G I W ) / ( Z . U O * G I W * * Z ~  
COMPUTE dOH/AOW 

a K H 1 1 )  = D S I N ( W G I W ) / G I W  
C O M P U r t  C U t F F S  OF A O H * * L t B O H * * Z r A N D  AOH+BOH I N  
1 0 3  I F  ( 6 G J H l  213.4 

2 	 J I I (  1 )  = 1 
t X P P  = OEXP( f -HGJH)  
E X P N  = O t X P ( - F H G J H I  
5 % 3 F  = l E X P P - E X P N 1 / 2 . 0 0  
CiNHt = ( k X P P + E X P N ) / Z . D O  

l l / h ) *  COEFF OF ( A O H ) + * Z  I N  KMLZ 
AAzlMOH = S N H F / F H G J H - l . O O  

l l / h ) *  COEFF OF o O H * * Z  I N  KMLZ 
Of3NMOH = S N I i F / F H L J H + l . U O  

11/2H)* COEFF U F  AOH*SOH I N  RMLZ 
A8NMOH = I ChHF- 1 . U O ) / F H G J H  
ti0 T O  5 

RMLZ 
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3 	 J r C ( 1 )  = 2 
AAVMOH = 2 . 0 0 + ( 2 . O O * H ) * + 2 / 3 . D 0  
6dNMOH = 2.00 
Ab!\IMOH = Z.UO+H 
ti0 TO 5 

4 	 J H ( 1 )  = 3 
SNF = U S I N ( F H G J r C 1  
CIVF = U C O S ( F H G J H 1  
AANMOH = l . D S - S N F / F H G J H  
L)OXMOH = l . D O + S N F / F H G J H  
ABNMOH = ( l . O O - C N F I / F H G J H  

5 GO TU l 1 0 6 , 1 0 7 ) , E V O U D  
C C U M P U T t  AOH/BOW 

106 	SNF = U S I N ( b 4 b I W )  
A K r l ( 1 )  = - G I d * S N F  
irU TO 108 

C 	 CDMPUTF A O H / A O d  
1 0 7  A K H ( 1 )  = D C O b ( W G I W )  
108 J H K  = J H ( 1 )  

L O  TU ( 6 1 7 1 6 J . J H K  
6 A K t i ( 1 )  = A K H ( l ) / G J H  

C TERM 1?4 RMLZ U U E  TO Z E R U T H  H I L L  
7 R M L L ( 2 )  = H * ( A A N M O H + A K H ~ 1 ) + * 2 + ~ t ) N M O H + B K H ( 1 ) * * 2  

1 + 2 . D O + U B N M O H r A K H ( l ) * ~ K H ( l ) )  
00 4 0  I = l , N  
X I  = I 
I 1  = I + 1  
dtilri  = E X - X l * * Z * V O P  
A 8 G l r i  = D A b S ( b G I b 4 )  
b I r ~= t T A * O S w K T ( A B L I d )  
G K d L I l )  = G I d  
T w G I A  = 2 .UO+d*GIW 
F w G I W  = 4.UO*W*GIW 
GO TO(  t l t  91 10 I ,  J H K  

L C O M P U T t  B I w / b O W  
8 	 t X P P J H  = D E X P ( T H G J H 1  

t X P N J H  = U E X P ( - T H G J H )  
> N H F J t i  = ( E X P P J H - E X P N J d ) / Z . U O  
LIVI i FJ H = ( E XP PJ t i +  EXPN J H ) / 2.00 
L i K d (  1 1 )  = A K H ( I ) * S N k l F J H + U K H ( I ) + C N H F J n  
A K d ( I 1 )  = G K H ( I ) * ( A K H l I ) * C N H F J k l + b K H ( I ) * S N H F J H )  
L O  10 1 1  

9 d K ' d ( I 1 )  = 2 . 0 O + H * A K H ( I ) + B K H ( I )  
A K d  ( 1 1 )  = A K H ( I I  
b D  TO 1 1  

10 	S N F J H  = U S I N I T H G J H )  
C i \ F J H  = DCUS(  T H G J d )  
t i K d (  1 1 )  = A K d l  I )  *S;.IFJH 
A K d ( I 1 )  = L K H I I ) * ( A K d (  

11 I F  (E3tili.l) 1 Z r 1 3 , 1 4  
12  J d ( l 1 )  = 1 

C C O M P U T t  L U t F F S  OF A I d * * Z v B  
t X P P I b 4  = O t X P I F d G I W )  
t X P N l A  = D E X P ( - F d G l H )  
> N H k I W  = ( t X P P I i d - E X P N I  

~ K H (I ) + C N F J H  
) * C N F J H - d K H (  

w * * 2 ,  A I  w * U I  Hi 

) / 2 . D O  

) * S N F J H )  

I W  KMLZ 

L N t i F I  b4 = ( t X P P 1  d + t X P N I  W) / 2 .  DO 
C ( l / d I * C O E F F  OF A I W * * 2  

AANPl l  ri = SNIiF I W / F \ 4 G I A - l . D O  
L ( I / W ) * C u t F k  OF UliJ**2 

6 L l q t 3 l w  = S N H i - I N / F d L i d + l . O O  
C l 1 / 2 d ) * i O t F F  OF A I d * J I r l  

A d r \ M  I W = ( Lr'4liF I W - 1 .  U O ) /FNG I W  
G O  TO 1 5  
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1 3  J r i ( I 1 )  = 2 
A A  J M I W  = Z . U O * ( 2 . U O + W ) * + Z / 3 . 0 0  

dW4MIW = 2.UU 

A J : \ I M I W  = 2 .OO*W 

ti0 T O  1 5  


14 	J w ( l 1 )  = 3 
S X F I d  = U S I N ( F W G 1 W )  
C N F I N  = U C O S ( F W t i 1 Y )  
A A U M  1 d = 1.30- S Y  F I H/ F W ti I W 
J i l N M I  W = 1. U O + S N F I W / F W t i I d  
At3NMIN = ( I . U O - C N F I v 4 ) / F d G I W  

1 5  J d K  = J w ( I l 1  
C COMPUTt  A I w / n O W  

GO T O  ( 2 0 1 2 1 1 2 0 1 , J W K  
20 A K N ( I 1 1  = A K d ( I l ) / G I N  

L TERM I N  H M L Z  DUE T O  I T H  WELL 
21 I2 = 2 * 1 + 1  

KMLZ(I2) = d * ( A A N M I W * A K d ( I l I * *  I * *  
1 + 2 . 0 0 * A ~ N M I W + A K N ( l l ) * ~ K W ( I l ) )  

C C O M P U T t  U U A N T I T I E S  FOR I T H  HILL 
2 2  	8 G J H  = BG1I.I-YO 

AHGJH = O A t 3 S I R G J H )  
LJrl = t T A * U S U R T ( A R G J H )  
b K r l ( I 1 )  = GJH 
r H G J H  = Z.OO*H+GJH 
F H L J H  = 4 .UO+H*GJH 

C LOMPJTI ;  C O t F F  U F  A J t I * * 2 , B J H * * 2 ,  A N 0  A J H * B J H  I N  RMLZ 
I F  ( 8 G J H )  2 3 ~ 2 4 ~ 2 5  

2 3  J H ( I 1 )  = 1 
C E X P P J r l  ANU E X P N J H  NUT SAME AS T H O S t  U s e 0  R k T W t t N  8 AUU 9 

E X P P J H  = O E X P ( F H G J 1 i )  

k A P U J H  = O C X P ( - F H G J t i l  

~ I U H F J H  = ( C X P P J H - k X P N J H ) / Z . U O  

C N t i F J H  = L E X P P J H + t X k " J H ) / Z . O O 


L l l / H ) * C U t F F  OF A J H  r.2 
2 0  AANMJH = S h t i F J H / F H G J H - I . O O  

C l l / H ) * C O E F F  OF H J H  + + 2  
d 3YM J H = SNHC:J H /  F HG J li+ 1 - 0 0  
A W M J H  = ( CIUHFJH-1. U O )  / F H G J H  
L U  T O  3 3  

2 4  J H I I I )  =Z 
30 	AAUMJH = Z .UO+(Z .DO*H1+*2 /3 .U0  

d d N M J H  = 2 . W  
AI jNMJH = 2.UO*H 
b U  TU 3 3  

2 5  	J t i (  1 1 )  = 3  
b N F J H  = D S I N ( F H G J H 1  
C Y F J H  = U C U b ( F H G J t i 1  

32 AAidMJH = l . I . )O-S ' lFJH/FHGJH 
t 3 U  ' IMJ  t i  = I .  t lO+SNF J H /  FHGJ H 
A3NMJH = .I l . U O - C N F J H ) / F H G J I i  

3 3  	JHK = J H L I I )  
b0 T O  ( 2 7 r Z Y , 3 1 1 r J N K  
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C E X P P I d  AND E X P N I W  O I F F t H E N T  FROM THOSE D E T r l E E N  1 2  AN0 13 
27 	E X P P I w  = O E X P i T W G I N I  

E X P N I W  = O F X P ( - T W G I d )  
S N H F I d  = i � X P P I r l - E X k " I W ) / Z . U O  
C N l i F I d  = iEXPP 1 d + E X P N I r l )  /2 .  DO 
I F  ( I -N.GE.0) GO TO 41 

C C O M P U T t  BJH/BOW 
B K I i i 1 1 )  = A K d ( I l ) * S N H F I W  + B K W ( I I ) + C N H F I W  

C COMPUTE AJH/BOW 
A K H (  1 1 )  = GIW'*( AKW( I 1  ) * C N H F I  W+BKW( I 1  ) + S N H F  I W )  
GO TO 26 

U K H i I 1 )  = 2 . D O * W * A K ~ ( I l ) + B K W i I l )  


2 9  	I F  ( I -N.t iE.0) GO TO 4 1  
A K H i I 1 )  = A K V ( i I 1 1  
GO TU 26 

3 1  	S A F I M  = D S I N ( T W G I k 4 )  
C N F I I l  = D C O S t T W G I W )  
I F  ( I -N .GE.0)  GO TO 4 1  
d K H i I 1 )  = ~ K W ' i I l ) + S N F I t 4 + B K W i I l ) * C N F I W  
A K H i I l )  = G I W * ( A K ~ ( I l ) * C N F I W - B K W ( I l ) r S N F I W )  

2 6  ti0 T O  ( 3 8 1 3 9 1 3 8 ) i J H K  
38 A K h i I 1 )  = A K H i I l ) / G J H  

C T�RM 111 K M L L  DUE TO I T H  H I L L  
39 13 = IL+1 

K N L Z ( I 3 )  = H + ( A A N M J H * A K H ( I l ) * 1 . 2 + B B N M J H I O K H ( I 1 ) . + 2  
1+2.DO*AtSNMJH+AKHi I l ) + b K H (  1 1 )  1 

40 C O N T I N U E  
C COMPUTE U U A N T I T E b  FOR L A S T  H I L L  

4 1  	N l  = N + 1  
J K H ( N 1 )  = 0.UO 
GO TU / 4 2 1 4 3 r 4 6 ) 1 J t 4 K  

4 2  A K H I  N 1 )  = A K w i  N 1 1  * S N H F I  W+BKWi N l )  *CNHF I d  
GO TU 4 5  

4 3  A K H I  N 1 )  = 2.001. W+AKWi N l )  +BKW i N 1 )  
LO TU 4 5  

44 A K H i N 1 )  = A K d i  N 1 ) * S N F  I W+bKvi( N 1 )  + C N F I  W 
4 5  I F  I B G J H )  4 6 , 4 7 , 4 8  
46 	 E X P P J H  = O E X P i T H G J H )  

k X P N J H  = O E X P I - T H G J H )  
S N t i F J H  = It X P P J H - E X P N J H ) / Z . D O  
A K I i ( N 1 )  = - A K H ( N I ) / > N H F J H  

C i l / k i ) * C U E F F  OF A K H ( N + l ) * * Z  I N  RMLZ 
t X P P J H  = U E X P i F H G J H )  
t X P N J H  = D t X P i - F H G J H I  
S N H F J H  = ( E X P P J H - � X P N J H ) / Z . D O  
AANMJH = SNHFJH/FHGJH-1.DO 
LO T O  49 

4 7  	A K H ( N 1 )  = - A K H ( N l ) / ( Z . U O + H )  
AANMJH = Z . D O * i 2 . 0 0 ~ H 1 * ~ 2 / 3 . D 0  
LO T O  49 

4 8  	S N F J H  = U S I N i T H G J H )  
A K H i h . 1 )  = - A K H ( N l ) / S N F J H  
5 N F J i i  = U S I N ( F H G J H )  
AANMJH = I . U O - S N F J H / F H G J H  

C L A S T  ENTRY I N  RMLZ 
49 	 N2 =21.111 

N M L L I N L I  = H + A A N M J H + A K H l N 1 ) * + 2  
HML = 0.00 
00 50 J = l r N 2  

5 0  KML = NML + K M L Z t J )  
5 1  	dOrl = ~ S U R T i l . O O / ( 2 . U O * H M L ) )  

C A L L  d F C i E V I  
RETURN 
tNO 

-
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S U B R O U T I N E  W F C t E V I  

DOClBLE P R E C I S I C N  AKWIBKW*AKH,BKH,GKW,GKH~EV.VO.VOVOP 

D I C E N S I O N  J 0 0 l 1 0 0 1 i A K W l 5 0 1 ~ B K W l 5 0 I ~ A K H 1 5 0 I ~ B K H 1 5 0 1 ~  


1 G K k l 5 0 ) ~ G K ~ 1 5 0 1 r X P l 2 2 0 1 ~ W F 1 2 2 0 1 ~ W F S ~ l 2 2 0 1  
I N T E G E R  EVCCO 
COCCON COP 
E Q U I V A L E N C E  ~A~COMl1ll~lW~CO~l3l).(H.COMl5ll~lVO~COMl7II~ 

1 l N ~ C O M l 1 6 I l ~ l V C P ~ C O M l 3 2 5 l I ~ l R O O T . C O M o I ~ l X S T A R T ~ E S T A R T ~ C O ~ l l 1 l l l ~  
T l N I r C 0 C 1 1 7 1 l ~ l N F ~ C 0 # o ) , ( N S r C O H o ) 1 l J O O ~ C O M l 2 2 5 l ~ ~  
2 l K P L O T ~ C O H 1 5 7 4 I I ~ l 1 K l . t O H o ) 1 1 X P ~ C O M l 5 7 6 ~ ~ ~ l M F ~ C O ~ l ~ 9 6 ~ I ~  
3 l W F S O ~ C O M ~ l l l 6 ) ) ~ l B O W ~ C O M l 9 5 O 3 l l ~ l A K W ~ C O M l 9 5 O 5 l l ~ l B K W ~ C O M l ~ 6 O 5 l l ~
4 l A K H , C C M l 9 7 0 5 ) ) ~ l B K H ~ C C M l 9 B O 5 l l ~ l G K W ~ C O M l 9 9 O S l I ~ l G K H ~ C O M l l O O O 5 l l ~  
5 I EVODO vCCMI329 I I 

GO TO I l . l C 1 1 , E V O D D  
1 B K W I 1 )  = B C h  

GO TO 102 
101 A K k l l l  = B C M  
102 N 1  = N + l  

00 2 J Z 1 . N  

J1= J+1 

A K k I J 1 1  = B O W + A K W I J l )  

B K h ( J l 1  = B O W * R K W I J l l  

A K H I J I  = B O W * A K H l J l  


2 	 B K H I J I  = BOW* B K H I J I  
A K H l N 1 )  = B O W * A K H I N 1 1  
B K H I N 1 1  = 0.000 

C A L L  	CCEFFS NOW N O R M A L I Z E D  AN0 S T O R E 0  
I K 1  = 0 
I F  I J D C l l I l  4.4.3 

3 	I K l = I K l  + 1  
ANH = r l K h l 1 I  
E N h  = E K H l 1  I 
GOk = G K h I 1 1  
GOH = G K H l 1 I  
C A L L  WFOIANH,BNH,GOWIGOH) 

4 J O  = N F I N S  
00 10 I = Z . h l  
I F  I J O C I I I I  1 0 ~ 1 0 . 5  

5 I F  1 1 - N 1 1  716.6 
6 C A L L  S L I T E  I 2 1  
7 I K L  = I K 1  + 1  

A N k  = A K W I I I  

R N k  = B K k l I l  

G I k  = G K k I I I  

C A L L  W F X I W I P N W ~ B N W ~ G I W I I I  

I F  1 1 - h l l  8,11111 


8 	 ANH = A K h l I l  
BNH = EKHIII 
G J H  = G K H I I )  
C A L L  W F X I H I A N H I B N H ~ G J H ~ I I  

1c  C C h T I N L E  
11 C A L L  S L I T E T l 2 , K O O O F X )  

GC T 0 1 1 Z r 1 3 1 , K O O O F X  
1 2  	ANH = A K H l h l )  

B N H  = 0.0 
G J H  = G K H l h l l  
C A L L  S L I T E  121 
C A L L  W F X I H I A N H , B N H r G J H ~ I I  

1 3  W R I T E  16,611 V C ~ V O P V E V I R O W ~ E V O O O  
6 1  FORMAT 1 1 H K . 1 0 X 1 3 H V 0 = F 5 . 1 ~ 5 X 1 4 H V O P = F 1 5 . 9 r 5 X 1 3 H E V = 1 P D 2 3 . 1 5 ~ 5 X ,  

1 4 H B O M = 1 P E 1 5 . 7 , 5 X , 6 H E V O C D - I 2 / / 1  
2 2 l 4 X . 3 H X P W . 6 X , 4 H Y F I W ~ 4 X ~ 6 H k F I W S ~ ~ 4 X ~ 3 H X P H ~ 7 X ~ 4 H W F I H ~ 4 X ~ 6 H W F I H S ~ l )  

FlPLOT = N / 2  + 1  
00 14 I A =  1,NPLOT 
K= 4 0 * l I A - l l  + 1  
L = K + 9  
W R I T E  (6,631 

6 3  	FORMAT IlHKI 
W R I T E  I 6 ~ 6 2 l l l X P l J l ~ W F l J l r W F S P o r X P l J + l O l ~ W F l J + l O ~ ~W F S P I J + 1 0 1 1  

1 X P l J + 2 O I ~ W F l J + 2 O l ~ W F S Q l J + 2 O I ~ X P I J + 3 0 ) . W F ~ J + 3 O I ~  WFSQI J+30) 1 
2 ,  J = K q  L I 

6 2  FORMAT l 4 l C P F B ~ 3 ~ 1 P E 1 0 ~ 2 ~ 1 P E 1 0 ~ 2 1 1  
14 C O h T I N U E  

GO TO l 1 5 . 1 6 I , K P L O T  
15 C A L L  P L O T F X I E V I  
16 RETURN 

EN0 
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1 


l d  

12 
13 

2 

3 


4 

5 

10 
.c 


S U B R O U T I N E  MO~AHNIBHNIGOWIGOH) 

O I M E N S I O N  X e e 2 2 0 h . W F ( 2 2 0 ) ,  W F S 4 ( 2 2 0 ) r J H ( 1 0 0 )  

INTEGER E W E 0  


JHK= JH(  11 
XNF = N F  
DO 10 K = N I , Y F e N S  
XK = K 
xw = x K w u x t u &  
GXY = GOWtXL  
X R l K )  XY 
GO TO L l l o l i i L r E V O D O  
( W f i l K )  B O U t  GOS(GX0I)  
GO TO 13 
Y F I K )  f B O Y t S I N ( G X W B / G O W  
UFLQ(L0 = M E C K I  + + 2  
XH = 2 .O*HqX#/KNF 
GXH = GOHZKH 
J* K + l O  
X P l J )  * XH + Y 
GO TO l 2 , 3 . 4 h J H K  
Y f i L J )  = A H N t  S I N H L G X H )  + BHN+ COSH(GXH1 
GO TO 5 
Y 6 t  J)  = A H N t  KH + BHN 
GO TO 5 
1 1 6 1 5 )  = A H Y t  S I N t G X H )  + BHN+ C O S l G X H )  
YESP(J1 = Y 6 t J 1 + + 2  
C O N T I N U E  
RETURN 
E N 0  

S U 8 R O U T I N E  WFXI  WlANVI,BNW,GI W, I )  

D I M N U S I O N  X P ~ 2 2 0 l ~ W F ~ 2 2 0 ~ ~ W F S Q l Z Z O ~ ~ J W ~ l O O ~  

CDPMON COM 

E Q U I V A L E N C E  l A ~ C O M l l ~ ~ r ~ W ~ C O M l 3 ~ ~ r ( N I C O M ( 1 6 ~ ~ ~  


1 l N I ~ C O M l 1 7 ~ l ~ ~ N F ~ C U M l l ~ l ~ , ( N S , C O M ~ l 9 ~ l ~  
2 I X P ~ C O M ( 5 7 6 ) ) r l M F ~ C O M 1 8 9 6 ) )  1~ ~ W F S Q ~ C U M I 1 1 1 6 l ~ ~ ~ J W ~ C O M l l O Z O 5 ~  


1 	 I = I  
JLrK = J W I I )  
X I  = 1-1 
X N F  = N F  
DO 10 K =  NI .NF,NS 
XK = K 
X Y  = 2.0+W+XK/XNF 
XPW = XI+A-LJ  + XW 
G X P d  = G I w * X W  
K P  = 2 0 + 1 I - l )  + K 
X P ( K P )  = XPW 
GO TU ( 2 , 3 , 4 ) , J W K  

2 W F I K P )  = 
GO TO 5 

3 H F I K P )  = 
GO TO 5 

4 W F I K P )  = 
5 V I F S Q I K P )  

10 	C O N T I N U E  
RETURN 
END 

A N W c S I N H ( G X P W )  + BNW+ COSHIGXPW) 

ANW+XW + BNM 

A N W + S I N ( G X P W )  + BNW+ COS(GXPW) 
= H F ( K P )  *+2 
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S U B R O U T I N E  WFXIH(ANH.BNH,GJH. I )  
O I P E N S I O N  X P l Z 2 O ~ ~ W F ~ 2 2 0 1 ~ W F S ~ t 2 Z O J ~ ~ H l l O O ~  
CCCMON COY 
COCMGN COCOCH t 10210) 
E P L I V A L E N C E  l A ~ C O M l l ~ ~ ~ t W ~ C O M t 3 ~ ~ ~ l H ~ C O M ~ 5 ~ ~ ~ l N ~ C O M l l 6 ~ ~ r  
1 t N I ~ C O Y t 1 7 ~ ~ ~ t N F ~ C O H 1 1 ~ ~ 1 ~ l N S ~ C 0 H 1 1 9 ~ ~ ~  
2 l X P ~ C O C l 5 7 6 ~ ~ ~ l W F ~ C O H ( 8 9 6 ~ ~ . I W F S P l t O M ~ l l l 6 ~ ~ ~ l J H r C O M l l O l O 5 ~ ~  

1 1=1 
JHK = J H t I )  

XN = N 

X I  = 1-1 

XNF = hF 

C A L L  S L I T E T t 2 , K O O O F X I  


GC ~ 0 1 1 1 ~ 6 ) r K O O O F X  
6 	 00 10 K= N I r N F , N S  

XK = K 
XH = 2 . 0 * H * X K / X N F  
XPH = X I * A  + W  + X H  
GXPH = G J H * X H  
K P  = 2 0 + 1 1 - 1 1  + K +10 
X P I K P )  = XPH 

2 0  GO T O  1 2 , 3 , 4 ) r J H K  
2 W F f K P )  = A h H m S I N H I G X P H )  

GO TO 5 
3 W F I K P )  = A h H + X H  + BNH 

GO T O  5 
4 W F t K P )  = A h H * S I N t G X P H )  
5 C F S P I K P )  = W F I K P )  **2 

1c  	C C N T I N L E  
GC T O  15 

11 00 12 K = h 1 , N F e N S  
XK = K 
XH = Z.O*H*XK/XNF 
XPh= XN*A + W + X H  
GXPH = G J H * I X P H  - A * I X N  
KP = 20*11-1) + K +10 
X P t K P )  = XPH 
G O  ro (~,EI,~),JHK 

7 W F t K P )  = A N H * S I N H I G X P H )  
GO T O  13 

a W F t K P )  = A h H * X H  
GO T C  13 

9 H F t K P )  = A h H *  S I N I G X P H )  
1 3  W F S Q I K P )  = W F I K P )  * I 2  
1 2  C O N T I N U E  
1 5  RETURN 

E N 0  

+ BNH* C O S H I G X P H )  

+ BNH* C O S I G X P H )  

+ 1-01 + W )  
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S U t I R O U T I N E  P L O T F X ( E V 1  
C P L O T S  XP V E K T I C A L L Y  

D I M E N S I O N  X P ~ 2 2 0 l ~ W F ~ 2 2 0 1 ~ W F S O ~ 2 2 0 1  
D I M E N L I O N  X D O W N l 2 1 5 ) ~ Y A C R O S ( 4 3 O ) , K K K K ~ l 4 l ~ P ~ l l l  
COMMON COM 
E Q U I V A L E N C E  ~ N ~ C O M ~ 1 6 l ~ ~ ~ V O ~ C O M ~ ~ l ~ ~ ~ V O P ~ C O M l 3 2 5 ~ ~ ~  

l ( X P ~ C O M ~ 5 7 6 l ~ ~ ~ M F ~ C ~ M ~ B 9 6 l l ~ ~ W F S 9 ~ C O M ~ 1 l ~ 6 ~ ~ ~ ~ E V O O O ~ C O M ~ 3 2 9 ~ ~ t  
2 1 X O S I Z E ~ C O M ( 8 0 7 1l ~ ~ L T M ~ C O M ~ 8 1 4 l l ~ ~ L T N ~ ~ O M l B l 5 l l ~ ~ K N ~ C O M ~ B l 6 ~ ~ ~  
3 ~ K S X ~ C U M ~ 8 1 7 ~ l ~ ~ K S Y ~ C O M ~ B l B l l ~ l F X ~ C O M ~ B l 9 ~I , ( D X , C O M ( B Z O J l ~  
4 ( F Y , C O M ( 8 2 1 1 1 ~ ( D Y ~ C ~ M ( B 2 2 1 )  

I N T E G E R  X O S I Z E t E V O D D  
1 	00 10 IO = 195 

J = 2+10 
XOOWN (IO) = X P ( J )  
Y A C K O S ( I 0 )  = WF(J)  
I S U  = X O S I Z E  + IO 

10 Y A C R O S ( I S 9 )  = M F S Q ( J 1  
C WF A N 0  WFSU FOH L E R O T H  WELL NOW S T O R E 0  I N  YACRUS 

2 N P L  = L O + l N + l I  
00 20 1 1  = l 1 , N P L  
J1 = I 1  -5 
X O O W N ( J 1 )  = X P ( I l I  
Y A C R O S ( J 1 1  = W F ( I 1 )  
J S Q  = X O S I Z E  + J1 

20 YACHOS ( J S U l  = W F S Q ( I 1 1  
C A L L  WF AND NFSQ NOW S T O K E D  I N  YACAOS 
C K N  I S  THE NUMBER OF C U R V E S  

K K K ( 1 1  = 54 
K K K I Z I  = K N  

C NO OF P O I N T S  IS = TO T H E  VALUE OF X O S I Z E  
K K K ( 3 )  = X O S I Z E  
P ( 1 )  = 1.0 

C L T M  S P E C I F I E S  NUMBER L I N E  SPACES BETWEEN G R I D  L I N E S  
P ( 3 ) =  L T M  

C L T N  S P E C I F I E S  NUMBER OF P R I N T  SPACES BETWEEN GRID L I N E S  
‘ P ( 4  = L T N  
P ( 6  = K S X  

C F X  U S E D  TO S P E C I F Y  S T A R T I N G  V A L U E  OF V E R T I C A L  S C A L E  
P (  7 = F X  

C D X  USED T O  S P E C I F Y  CHANGE I N  V E R T C A L  GRID V A L U � S  E A C H  L I N E  SPACE 
P (  8 = O X  
P ( 9  = K S Y  

C F Y  U S E D  TO S P E C I F Y  S T A R T I N G  V A L U E  OF H O R I Z O N T A L  S C A L �  
P ( I 0 )  = F Y  

C OY U S E D  TO S P E C I F Y  CHANGE N HOR ZONTAL G R I D  V A L U E S  E A C H  P K I N T  SPACE 
P ( 1 1 1  = D Y  

C T I T L E  
M R I T E  ( 6 , 6 1 1  N t E V O D O  

6 1  F U K M A T ( Z H P T t 4 0 X e 3 6 H W A V E  F U N C T  
1 6 k E V O D O = I 2 1  

3 C A L L  P L O T M Y ( X O O W N , Y A C R O S I K K K , P )  
C LEGENO 

W H I T E  ( 6 , 6 2 1  V O t V O P v E V  
6 2  FOKMAT ~2HPL,30X.3HVO=F5.1~5X,4HVOP=lPEl5.~,SX~3HEV=lPO23.l6, 

1 3 H O N = l  
RETUHN 
END 
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